Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which ordered pairs could be points on a line parallel to the line that contains [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex], we need to check which pairs of points have the same slope as the line passing through these two points.
1. Calculate the slope of the line passing through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]:
The slope, [tex]\( m \)[/tex], of a line passing through points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points:
[tex]\[ m = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
So, the slope [tex]\( m \)[/tex] is [tex]\( \frac{2}{5} \)[/tex].
2. Check each pair of points to see if they have the same slope:
- [tex]\((\mathbf{-2, -5})\)[/tex] and [tex]\((\mathbf{-7, -3})\)[/tex]:
[tex]\[ m = \frac{-3 - (-5)}{-7 - (-2)} = \frac{2}{-5} = -\frac{2}{5} \][/tex]
This slope is not equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{-1, 1})\)[/tex] and [tex]\((\mathbf{-6, -1})\)[/tex]:
[tex]\[ m = \frac{-1 - 1}{-6 - (-1)} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
This slope is equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{0, 0})\)[/tex] and [tex]\((\mathbf{2, 5})\)[/tex]:
[tex]\[ m = \frac{5 - 0}{2 - 0} = \frac{5}{2} \][/tex]
This slope is not equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{1, 0})\)[/tex] and [tex]\((\mathbf{6, 2})\)[/tex]:
[tex]\[ m = \frac{2 - 0}{6 - 1} = \frac{2}{5} \][/tex]
This slope is equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{3, 0})\)[/tex] and [tex]\((\mathbf{8, 2})\)[/tex]:
[tex]\[ m = \frac{2 - 0}{8 - 3} = \frac{2}{5} \][/tex]
This slope is equal to [tex]\(\frac{2}{5}\)[/tex].
3. Conclusion:
The pairs of points that have a slope equal to [tex]\(\frac{2}{5}\)[/tex], and thus could be on a line parallel to the line containing [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex], are:
[tex]\[ \boxed{(-1, 1) \text{ and } (-6, -1), (1, 0) \text{ and } (6, 2), (3, 0) \text{ and } (8, 2)} \][/tex]
So, the ordered pairs that match are [tex]\((-1, 1) \text{ and } (-6, -1)\)[/tex], [tex]\((1, 0) \text{ and }(6, 2)\)[/tex], and [tex]\((3, 0) \text{ and } (8, 2)\)[/tex].
1. Calculate the slope of the line passing through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]:
The slope, [tex]\( m \)[/tex], of a line passing through points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points:
[tex]\[ m = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
So, the slope [tex]\( m \)[/tex] is [tex]\( \frac{2}{5} \)[/tex].
2. Check each pair of points to see if they have the same slope:
- [tex]\((\mathbf{-2, -5})\)[/tex] and [tex]\((\mathbf{-7, -3})\)[/tex]:
[tex]\[ m = \frac{-3 - (-5)}{-7 - (-2)} = \frac{2}{-5} = -\frac{2}{5} \][/tex]
This slope is not equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{-1, 1})\)[/tex] and [tex]\((\mathbf{-6, -1})\)[/tex]:
[tex]\[ m = \frac{-1 - 1}{-6 - (-1)} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
This slope is equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{0, 0})\)[/tex] and [tex]\((\mathbf{2, 5})\)[/tex]:
[tex]\[ m = \frac{5 - 0}{2 - 0} = \frac{5}{2} \][/tex]
This slope is not equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{1, 0})\)[/tex] and [tex]\((\mathbf{6, 2})\)[/tex]:
[tex]\[ m = \frac{2 - 0}{6 - 1} = \frac{2}{5} \][/tex]
This slope is equal to [tex]\(\frac{2}{5}\)[/tex].
- [tex]\((\mathbf{3, 0})\)[/tex] and [tex]\((\mathbf{8, 2})\)[/tex]:
[tex]\[ m = \frac{2 - 0}{8 - 3} = \frac{2}{5} \][/tex]
This slope is equal to [tex]\(\frac{2}{5}\)[/tex].
3. Conclusion:
The pairs of points that have a slope equal to [tex]\(\frac{2}{5}\)[/tex], and thus could be on a line parallel to the line containing [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex], are:
[tex]\[ \boxed{(-1, 1) \text{ and } (-6, -1), (1, 0) \text{ and } (6, 2), (3, 0) \text{ and } (8, 2)} \][/tex]
So, the ordered pairs that match are [tex]\((-1, 1) \text{ and } (-6, -1)\)[/tex], [tex]\((1, 0) \text{ and }(6, 2)\)[/tex], and [tex]\((3, 0) \text{ and } (8, 2)\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.