Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Which of the following is a diagonal matrix?
[tex]\[
\begin{array}{l}
{\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -42 & 0 \\
0 & 16 & -7.5
\end{array}\right]} \\
{\left[\begin{array}{ccc}
0 & 3.5 & -18 \\
1 & 0 & 9 \\
6 & -4 & 0
\end{array}\right]} \\
{\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -22 & 0 \\
0 & 0 & 7.5
\end{array}\right]} \\
{\left[\begin{array}{ccc}
0 & 0 & 7.5 \\
0 & -22 & 0
\end{array}\right]}
\end{array}
\][/tex]


Sagot :

To determine which of the given matrices is a diagonal matrix, we need to verify that all the non-diagonal elements (those not on the main diagonal) are zero, and only the elements on the main diagonal can be non-zero.

Let's go through each matrix one by one and check if it meets the criteria for being a diagonal matrix.

Matrix 1:
[tex]\[ \begin{bmatrix} 2 & 0 & 0 \\ 0 & -42 & 0 \\ 0 & 16 & -7.5 \end{bmatrix} \][/tex]

- For element (1,3) = 0 and (2,3) = 0.
- However, (3,2) = 16 which is not zero.

Since (3,2) is not zero, this matrix is not a diagonal matrix.

Matrix 2:
[tex]\[ \begin{bmatrix} 0 & 3.5 & -18 \\ 1 & 0 & 9 \\ 6 & -4 & 0 \end{bmatrix} \][/tex]

- For element (1,2) = 3.5, (1,3) = -18, (2,1) = 1, (2,3) = 9, (3,1) = 6, (3,2) = -4, which are all not zero.

Since multiple non-diagonal elements are not zero, this matrix is not a diagonal matrix.

Matrix 3:
[tex]\[ \begin{bmatrix} -1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5 \end{bmatrix} \][/tex]

- For element (1,2) = 0, (1,3) = 0, (2,1) = 0, (2,3) = 0, (3,1) = 0, (3,2) = 0.

All non-diagonal elements are zero. Therefore, this matrix is a diagonal matrix.

Matrix 4:
[tex]\[ \begin{bmatrix} 0 & 0 & 7.5 \\ 0 & -22 & 0 \end{bmatrix} \][/tex]

- This is not a square matrix (it is 2x3), and diagonal matrices must be square (n x n).

Therefore, matrix 4 cannot be a diagonal matrix due to its non-square shape.

Conclusion:
Among the given matrices, only the third matrix is a diagonal matrix:

[tex]\[ \begin{bmatrix} -1 & 0 & 0 \\ 0 & -22 & 0 \\ 0 & 0 & 7.5 \end{bmatrix} \][/tex]