Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the coefficient matrix that represents the given system of linear equations, we need to identify the coefficients of the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in each equation.
The system of equations provided is:
[tex]\[ \begin{aligned} 7x + 8y &= 28 \\ -3x + 9y &= -24 \end{aligned} \][/tex]
For a coefficient matrix, we only include the coefficients of the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex], and we do not include the constants (the numbers on the right side of the equations).
From the first equation [tex]\(7x + 8y = 28\)[/tex], the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are [tex]\(7\)[/tex] and [tex]\(8\)[/tex], respectively.
From the second equation [tex]\(-3x + 9y = -24\)[/tex], the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are [tex]\(-3\)[/tex] and [tex]\(9\)[/tex], respectively.
Thus, the coefficient matrix is constructed by placing these coefficients in their respective positions corresponding to each equation. The first row will consist of the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from the first equation, and the second row will consist of the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from the second equation.
Therefore, the coefficient matrix is:
[tex]\[ \left[\begin{array}{cc} 7 & 8 \\ -3 & 9 \end{array}\right] \][/tex]
From the given options, the matrix that accurately represents the coefficient matrix is:
[tex]\[ \left[\begin{array}{cc} 7 & 8 \\ -3 & 9 \end{array}\right] \][/tex]
So, the correct answer is:
[tex]\[ \left[\begin{array}{cc} 7 & 8 \\ -3 & 9 \end{array}\right] \][/tex]
The system of equations provided is:
[tex]\[ \begin{aligned} 7x + 8y &= 28 \\ -3x + 9y &= -24 \end{aligned} \][/tex]
For a coefficient matrix, we only include the coefficients of the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex], and we do not include the constants (the numbers on the right side of the equations).
From the first equation [tex]\(7x + 8y = 28\)[/tex], the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are [tex]\(7\)[/tex] and [tex]\(8\)[/tex], respectively.
From the second equation [tex]\(-3x + 9y = -24\)[/tex], the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are [tex]\(-3\)[/tex] and [tex]\(9\)[/tex], respectively.
Thus, the coefficient matrix is constructed by placing these coefficients in their respective positions corresponding to each equation. The first row will consist of the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from the first equation, and the second row will consist of the coefficients of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from the second equation.
Therefore, the coefficient matrix is:
[tex]\[ \left[\begin{array}{cc} 7 & 8 \\ -3 & 9 \end{array}\right] \][/tex]
From the given options, the matrix that accurately represents the coefficient matrix is:
[tex]\[ \left[\begin{array}{cc} 7 & 8 \\ -3 & 9 \end{array}\right] \][/tex]
So, the correct answer is:
[tex]\[ \left[\begin{array}{cc} 7 & 8 \\ -3 & 9 \end{array}\right] \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.