At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the electron configuration for germanium (Ge), which has an atomic number of 32, we must fill the electron orbitals following the Aufbau principle, which dictates the order in which orbitals are filled based on increasing energy levels. This principle is supplemented by Hund's rule and the Pauli exclusion principle.
Here are the step-by-step details for filling up the orbitals:
1. 1s orbital can hold up to 2 electrons.
[tex]$ 1s^2 $[/tex]
2. 2s orbital can hold up to 2 electrons.
[tex]$ 2s^2 $[/tex]
3. 2p orbitals (which has 3 sub-orbitals) can hold up to 6 electrons.
[tex]$ 2p^6 $[/tex]
4. 3s orbital can hold up to 2 electrons.
[tex]$ 3s^2 $[/tex]
5. 3p orbitals can hold up to 6 electrons.
[tex]$ 3p^6 $[/tex]
6. 4s orbital can hold up to 2 electrons.
[tex]$ 4s^2 $[/tex]
7. 3d orbitals (which has 5 sub-orbitals) can hold up to 10 electrons.
[tex]$ 3d^{10} $[/tex]
8. 4p orbitals can hold up to 6 electrons, but for germanium with atomic number 32, we only need 2 electrons to complete the required 32 electrons.
[tex]$ 4p^2 $[/tex]
Putting all these together, the full electron configuration for germanium (Ge) is:
[tex]$ 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2 $[/tex]
So, the correct answer from the given options is:
B. 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2
Here are the step-by-step details for filling up the orbitals:
1. 1s orbital can hold up to 2 electrons.
[tex]$ 1s^2 $[/tex]
2. 2s orbital can hold up to 2 electrons.
[tex]$ 2s^2 $[/tex]
3. 2p orbitals (which has 3 sub-orbitals) can hold up to 6 electrons.
[tex]$ 2p^6 $[/tex]
4. 3s orbital can hold up to 2 electrons.
[tex]$ 3s^2 $[/tex]
5. 3p orbitals can hold up to 6 electrons.
[tex]$ 3p^6 $[/tex]
6. 4s orbital can hold up to 2 electrons.
[tex]$ 4s^2 $[/tex]
7. 3d orbitals (which has 5 sub-orbitals) can hold up to 10 electrons.
[tex]$ 3d^{10} $[/tex]
8. 4p orbitals can hold up to 6 electrons, but for germanium with atomic number 32, we only need 2 electrons to complete the required 32 electrons.
[tex]$ 4p^2 $[/tex]
Putting all these together, the full electron configuration for germanium (Ge) is:
[tex]$ 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2 $[/tex]
So, the correct answer from the given options is:
B. 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^2
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.