At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the functions [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex] and [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex] to determine which statement is true.
### Step 1: Identify the Domain and Range of [tex]\( f(x) \)[/tex]
For the function [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex]:
- The domain of [tex]\( f(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex], since you can raise a positive number to any real power.
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because an exponential function with a positive base (but less than 1) will always produce positive values, but never zero or negative values.
### Step 2: Identify the Domain and Range of [tex]\( g(x) \)[/tex]
For the function [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex]:
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because the logarithm is only defined for positive real numbers.
- The range of [tex]\( g(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex]. This is because the logarithm function (with any positive base not equal to 1) can produce any real number as an output.
### Step 3: Compare the Options
Let's evaluate each option based on our findings:
- Option A: Domain of [tex]\( f(x) \)[/tex] = Range of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is true.
- Option B: Range of [tex]\( f(x) \)[/tex] = Domain of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option C: Domain of [tex]\( g(x) \)[/tex] = Range of [tex]\( f(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option D: Range of [tex]\( g(x) \)[/tex] = Domain of [tex]\( f(x) = \mathbb{R}^+ \)[/tex]
- The range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is not true.
Among all the options, Option A is correct.
Thus, the correct answer is:
[tex]\[ \boxed{21} \][/tex]
### Step 1: Identify the Domain and Range of [tex]\( f(x) \)[/tex]
For the function [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex]:
- The domain of [tex]\( f(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex], since you can raise a positive number to any real power.
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because an exponential function with a positive base (but less than 1) will always produce positive values, but never zero or negative values.
### Step 2: Identify the Domain and Range of [tex]\( g(x) \)[/tex]
For the function [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex]:
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because the logarithm is only defined for positive real numbers.
- The range of [tex]\( g(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex]. This is because the logarithm function (with any positive base not equal to 1) can produce any real number as an output.
### Step 3: Compare the Options
Let's evaluate each option based on our findings:
- Option A: Domain of [tex]\( f(x) \)[/tex] = Range of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is true.
- Option B: Range of [tex]\( f(x) \)[/tex] = Domain of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option C: Domain of [tex]\( g(x) \)[/tex] = Range of [tex]\( f(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option D: Range of [tex]\( g(x) \)[/tex] = Domain of [tex]\( f(x) = \mathbb{R}^+ \)[/tex]
- The range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is not true.
Among all the options, Option A is correct.
Thus, the correct answer is:
[tex]\[ \boxed{21} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.