Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze the functions [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex] and [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex] to determine which statement is true.
### Step 1: Identify the Domain and Range of [tex]\( f(x) \)[/tex]
For the function [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex]:
- The domain of [tex]\( f(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex], since you can raise a positive number to any real power.
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because an exponential function with a positive base (but less than 1) will always produce positive values, but never zero or negative values.
### Step 2: Identify the Domain and Range of [tex]\( g(x) \)[/tex]
For the function [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex]:
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because the logarithm is only defined for positive real numbers.
- The range of [tex]\( g(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex]. This is because the logarithm function (with any positive base not equal to 1) can produce any real number as an output.
### Step 3: Compare the Options
Let's evaluate each option based on our findings:
- Option A: Domain of [tex]\( f(x) \)[/tex] = Range of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is true.
- Option B: Range of [tex]\( f(x) \)[/tex] = Domain of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option C: Domain of [tex]\( g(x) \)[/tex] = Range of [tex]\( f(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option D: Range of [tex]\( g(x) \)[/tex] = Domain of [tex]\( f(x) = \mathbb{R}^+ \)[/tex]
- The range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is not true.
Among all the options, Option A is correct.
Thus, the correct answer is:
[tex]\[ \boxed{21} \][/tex]
### Step 1: Identify the Domain and Range of [tex]\( f(x) \)[/tex]
For the function [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex]:
- The domain of [tex]\( f(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex], since you can raise a positive number to any real power.
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because an exponential function with a positive base (but less than 1) will always produce positive values, but never zero or negative values.
### Step 2: Identify the Domain and Range of [tex]\( g(x) \)[/tex]
For the function [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex]:
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because the logarithm is only defined for positive real numbers.
- The range of [tex]\( g(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex]. This is because the logarithm function (with any positive base not equal to 1) can produce any real number as an output.
### Step 3: Compare the Options
Let's evaluate each option based on our findings:
- Option A: Domain of [tex]\( f(x) \)[/tex] = Range of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is true.
- Option B: Range of [tex]\( f(x) \)[/tex] = Domain of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option C: Domain of [tex]\( g(x) \)[/tex] = Range of [tex]\( f(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.
- Option D: Range of [tex]\( g(x) \)[/tex] = Domain of [tex]\( f(x) = \mathbb{R}^+ \)[/tex]
- The range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is not true.
Among all the options, Option A is correct.
Thus, the correct answer is:
[tex]\[ \boxed{21} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.