Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the height of the tree given the change in the angle of elevation, let's denote:
- [tex]\( h \)[/tex] as the height of the tree,
- [tex]\( x \)[/tex] as the initial distance from the observer to the base of the tree.
The key facts are:
1. The angle of elevation changes from [tex]\(45^{\circ}\)[/tex] to [tex]\(30^{\circ}\)[/tex] when the observer moves 5 meters closer to the tree.
We will use trigonometric relationships for both positions of the observer:
### Step 1: Setting up the equations
Initially, the angle of elevation is [tex]\(45^{\circ}\)[/tex] when the observer is [tex]\( x \)[/tex] meters away from the tree. Using the tangent function, we have:
[tex]\[ \tan(45^{\circ}) = \frac{h}{x} \][/tex]
Since [tex]\( \tan(45^{\circ}) = 1 \)[/tex]:
[tex]\[ 1 = \frac{h}{x} \][/tex]
Thus,
[tex]\[ h = x \][/tex]
When the observer moves 5 meters closer, the angle of elevation changes to [tex]\(30^{\circ}\)[/tex]. Now, the observer is [tex]\( x - 5 \)[/tex] meters away from the base of the tree. Again using the tangent function:
[tex]\[ \tan(30^{\circ}) = \frac{h}{x - 5} \][/tex]
Since [tex]\(\tan(30^{\circ}) = \frac{1}{\sqrt{3}}\)[/tex]:
[tex]\[ \frac{1}{\sqrt{3}} = \frac{h}{x - 5} \][/tex]
So,
[tex]\[ h = \frac{x - 5}{\sqrt{3}} \][/tex]
### Step 2: Solving the system of equations
We now have two equations:
1. [tex]\( h = x \)[/tex]
2. [tex]\( h = \frac{x - 5}{\sqrt{3}} \)[/tex]
Substituting [tex]\( h = x \)[/tex] from the first equation into the second equation, we get:
[tex]\[ x = \frac{x - 5}{\sqrt{3}} \][/tex]
Multiply both sides by [tex]\( \sqrt{3} \)[/tex]:
[tex]\[ x\sqrt{3} = x - 5 \][/tex]
Rearrange to solve for [tex]\( x \)[/tex]:
[tex]\[ x\sqrt{3} - x = -5 \][/tex]
[tex]\[ x(\sqrt{3} - 1) = 5 \][/tex]
[tex]\[ x = \frac{5}{\sqrt{3} - 1} \][/tex]
To simplify [tex]\( x \)[/tex], multiply numerator and denominator by the conjugate [tex]\( \sqrt{3} + 1 \)[/tex]:
[tex]\[ x = \frac{5(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \][/tex]
[tex]\[ x = \frac{5(\sqrt{3} + 1)}{3 - 1} \][/tex]
[tex]\[ x = \frac{5(\sqrt{3} + 1)}{2} \][/tex]
Now, substituting [tex]\( x \)[/tex] back into the height equation [tex]\( h = x \)[/tex]:
[tex]\[ h = \frac{5(\sqrt{3} + 1)}{2} \][/tex]
Calculating the numerical value:
[tex]\[ h \approx 6.83 \, \text{meters} \][/tex]
Hence, the height of the tree is approximately [tex]\( 6.83 \)[/tex] meters.
According to the result, none of the provided answer options in the original problem statement matches exactly the simplified height. However, given the calculations, we can conclude that Option A. [tex]\( \frac{5 \sqrt{3}}{3 - \sqrt{3}} \)[/tex] implicitly represents the right approach for the problem that pairs with the calculated numeric conversion.
- [tex]\( h \)[/tex] as the height of the tree,
- [tex]\( x \)[/tex] as the initial distance from the observer to the base of the tree.
The key facts are:
1. The angle of elevation changes from [tex]\(45^{\circ}\)[/tex] to [tex]\(30^{\circ}\)[/tex] when the observer moves 5 meters closer to the tree.
We will use trigonometric relationships for both positions of the observer:
### Step 1: Setting up the equations
Initially, the angle of elevation is [tex]\(45^{\circ}\)[/tex] when the observer is [tex]\( x \)[/tex] meters away from the tree. Using the tangent function, we have:
[tex]\[ \tan(45^{\circ}) = \frac{h}{x} \][/tex]
Since [tex]\( \tan(45^{\circ}) = 1 \)[/tex]:
[tex]\[ 1 = \frac{h}{x} \][/tex]
Thus,
[tex]\[ h = x \][/tex]
When the observer moves 5 meters closer, the angle of elevation changes to [tex]\(30^{\circ}\)[/tex]. Now, the observer is [tex]\( x - 5 \)[/tex] meters away from the base of the tree. Again using the tangent function:
[tex]\[ \tan(30^{\circ}) = \frac{h}{x - 5} \][/tex]
Since [tex]\(\tan(30^{\circ}) = \frac{1}{\sqrt{3}}\)[/tex]:
[tex]\[ \frac{1}{\sqrt{3}} = \frac{h}{x - 5} \][/tex]
So,
[tex]\[ h = \frac{x - 5}{\sqrt{3}} \][/tex]
### Step 2: Solving the system of equations
We now have two equations:
1. [tex]\( h = x \)[/tex]
2. [tex]\( h = \frac{x - 5}{\sqrt{3}} \)[/tex]
Substituting [tex]\( h = x \)[/tex] from the first equation into the second equation, we get:
[tex]\[ x = \frac{x - 5}{\sqrt{3}} \][/tex]
Multiply both sides by [tex]\( \sqrt{3} \)[/tex]:
[tex]\[ x\sqrt{3} = x - 5 \][/tex]
Rearrange to solve for [tex]\( x \)[/tex]:
[tex]\[ x\sqrt{3} - x = -5 \][/tex]
[tex]\[ x(\sqrt{3} - 1) = 5 \][/tex]
[tex]\[ x = \frac{5}{\sqrt{3} - 1} \][/tex]
To simplify [tex]\( x \)[/tex], multiply numerator and denominator by the conjugate [tex]\( \sqrt{3} + 1 \)[/tex]:
[tex]\[ x = \frac{5(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \][/tex]
[tex]\[ x = \frac{5(\sqrt{3} + 1)}{3 - 1} \][/tex]
[tex]\[ x = \frac{5(\sqrt{3} + 1)}{2} \][/tex]
Now, substituting [tex]\( x \)[/tex] back into the height equation [tex]\( h = x \)[/tex]:
[tex]\[ h = \frac{5(\sqrt{3} + 1)}{2} \][/tex]
Calculating the numerical value:
[tex]\[ h \approx 6.83 \, \text{meters} \][/tex]
Hence, the height of the tree is approximately [tex]\( 6.83 \)[/tex] meters.
According to the result, none of the provided answer options in the original problem statement matches exactly the simplified height. However, given the calculations, we can conclude that Option A. [tex]\( \frac{5 \sqrt{3}}{3 - \sqrt{3}} \)[/tex] implicitly represents the right approach for the problem that pairs with the calculated numeric conversion.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.