Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factorize the polynomial [tex]\( x^3 + x^2 + 4x + 4 \)[/tex], we need to break it down into a product of simpler polynomials or factors.
The polynomial is given as:
[tex]\[ x^3 + x^2 + 4x + 4 \][/tex]
After carefully examining and performing factorization, the polynomial can be expressed as:
[tex]\[ (x + 1)(x^2 + 4) \][/tex]
Let's analyze this factorization step-by-step:
1. The first factor is [tex]\( (x + 1) \)[/tex].
2. The second factor [tex]\( (x^2 + 4) \)[/tex] is a quadratic expression.
To verify, we can expand the factors to check if they produce the original polynomial:
[tex]\[ (x + 1)(x^2 + 4) = x(x^2 + 4) + 1(x^2 + 4) = x^3 + 4x + x^2 + 4 = x^3 + x^2 + 4x + 4 \][/tex]
This confirms that our factorization is correct:
[tex]\[ x^3 + x^2 + 4x + 4 = (x + 1)(x^2 + 4) \][/tex]
Now, let's compare this with the given options:
A. [tex]\((x-1)(x+2i)(\pi+2i)\)[/tex]
B. [tex]\((x+1)(x+2i)(x+2i)\)[/tex]
C. [tex]\((x-1)(x+2i)(x-2i)\)[/tex]
D. [tex]\((x+1)(x+2i)(x-2i)\)[/tex]
Among these options, we need to identify which one matches our factorization. We can see that:
[tex]\[ (x^2 + 4) = (x^2 - (-4)) = (x^2 - (2i)^2) = (x + 2i)(x - 2i) \][/tex]
Hence,
[tex]\[ (x + 1)(x^2 + 4) = (x + 1)(x + 2i)(x - 2i) \][/tex]
Thus, the option that correctly represents the complete factorization is:
D. [tex]\( (x+1)(x+2i)(x-2i) \)[/tex]
This matches our factorized form perfectly, showing that the complete factorization of the polynomial [tex]\( x^3 + x^2 + 4x + 4 \)[/tex] is indeed [tex]\((x + 1)(x + 2i)(x - 2i)\)[/tex].
The polynomial is given as:
[tex]\[ x^3 + x^2 + 4x + 4 \][/tex]
After carefully examining and performing factorization, the polynomial can be expressed as:
[tex]\[ (x + 1)(x^2 + 4) \][/tex]
Let's analyze this factorization step-by-step:
1. The first factor is [tex]\( (x + 1) \)[/tex].
2. The second factor [tex]\( (x^2 + 4) \)[/tex] is a quadratic expression.
To verify, we can expand the factors to check if they produce the original polynomial:
[tex]\[ (x + 1)(x^2 + 4) = x(x^2 + 4) + 1(x^2 + 4) = x^3 + 4x + x^2 + 4 = x^3 + x^2 + 4x + 4 \][/tex]
This confirms that our factorization is correct:
[tex]\[ x^3 + x^2 + 4x + 4 = (x + 1)(x^2 + 4) \][/tex]
Now, let's compare this with the given options:
A. [tex]\((x-1)(x+2i)(\pi+2i)\)[/tex]
B. [tex]\((x+1)(x+2i)(x+2i)\)[/tex]
C. [tex]\((x-1)(x+2i)(x-2i)\)[/tex]
D. [tex]\((x+1)(x+2i)(x-2i)\)[/tex]
Among these options, we need to identify which one matches our factorization. We can see that:
[tex]\[ (x^2 + 4) = (x^2 - (-4)) = (x^2 - (2i)^2) = (x + 2i)(x - 2i) \][/tex]
Hence,
[tex]\[ (x + 1)(x^2 + 4) = (x + 1)(x + 2i)(x - 2i) \][/tex]
Thus, the option that correctly represents the complete factorization is:
D. [tex]\( (x+1)(x+2i)(x-2i) \)[/tex]
This matches our factorized form perfectly, showing that the complete factorization of the polynomial [tex]\( x^3 + x^2 + 4x + 4 \)[/tex] is indeed [tex]\((x + 1)(x + 2i)(x - 2i)\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.