Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To simplify the rational expression [tex]\(\frac{6x^2 - 54}{5x^2 + 15x}\)[/tex], we need to factor both the numerator and the denominator, and then simplify by cancelling common factors.
1. Factor the Numerator:
The numerator is [tex]\(6x^2 - 54\)[/tex].
Notice that [tex]\(6x^2 - 54\)[/tex] has a common factor of 6. So, we can factor out the 6:
[tex]\[ 6x^2 - 54 = 6(x^2 - 9) \][/tex]
Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, which can be factored further:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
So, the numerator fully factored is:
[tex]\[ 6(x - 3)(x + 3) \][/tex]
2. Factor the Denominator:
The denominator is [tex]\(5x^2 + 15x\)[/tex].
Notice that [tex]\(5x^2 + 15x\)[/tex] has a common factor of [tex]\(5x\)[/tex]. So, we can factor out the [tex]\(5x\)[/tex]:
[tex]\[ 5x^2 + 15x = 5x(x + 3) \][/tex]
3. Write the Rational Expression with the Factors:
Now that we have factored both the numerator and the denominator, we can write:
[tex]\[ \frac{6x^2 - 54}{5x^2 + 15x} = \frac{6(x - 3)(x + 3)}{5x(x + 3)} \][/tex]
4. Simplify by Cancelling Common Factors:
We notice that [tex]\((x + 3)\)[/tex] is a common factor in both the numerator and the denominator, so we can cancel [tex]\((x + 3)\)[/tex] from both:
[tex]\[ \frac{6(x - 3)\cancel{(x + 3)}}{5x\cancel{(x + 3)}} = \frac{6(x - 3)}{5x} \][/tex]
So, the simplified form of the given rational expression is:
[tex]\[ \frac{6(x - 3)}{5x} \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{6(x - 3)}{5x}\)[/tex]
1. Factor the Numerator:
The numerator is [tex]\(6x^2 - 54\)[/tex].
Notice that [tex]\(6x^2 - 54\)[/tex] has a common factor of 6. So, we can factor out the 6:
[tex]\[ 6x^2 - 54 = 6(x^2 - 9) \][/tex]
Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, which can be factored further:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
So, the numerator fully factored is:
[tex]\[ 6(x - 3)(x + 3) \][/tex]
2. Factor the Denominator:
The denominator is [tex]\(5x^2 + 15x\)[/tex].
Notice that [tex]\(5x^2 + 15x\)[/tex] has a common factor of [tex]\(5x\)[/tex]. So, we can factor out the [tex]\(5x\)[/tex]:
[tex]\[ 5x^2 + 15x = 5x(x + 3) \][/tex]
3. Write the Rational Expression with the Factors:
Now that we have factored both the numerator and the denominator, we can write:
[tex]\[ \frac{6x^2 - 54}{5x^2 + 15x} = \frac{6(x - 3)(x + 3)}{5x(x + 3)} \][/tex]
4. Simplify by Cancelling Common Factors:
We notice that [tex]\((x + 3)\)[/tex] is a common factor in both the numerator and the denominator, so we can cancel [tex]\((x + 3)\)[/tex] from both:
[tex]\[ \frac{6(x - 3)\cancel{(x + 3)}}{5x\cancel{(x + 3)}} = \frac{6(x - 3)}{5x} \][/tex]
So, the simplified form of the given rational expression is:
[tex]\[ \frac{6(x - 3)}{5x} \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{6(x - 3)}{5x}\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.