At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To simplify the rational expression [tex]\(\frac{6x^2 - 54}{5x^2 + 15x}\)[/tex], we need to factor both the numerator and the denominator, and then simplify by cancelling common factors.
1. Factor the Numerator:
The numerator is [tex]\(6x^2 - 54\)[/tex].
Notice that [tex]\(6x^2 - 54\)[/tex] has a common factor of 6. So, we can factor out the 6:
[tex]\[ 6x^2 - 54 = 6(x^2 - 9) \][/tex]
Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, which can be factored further:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
So, the numerator fully factored is:
[tex]\[ 6(x - 3)(x + 3) \][/tex]
2. Factor the Denominator:
The denominator is [tex]\(5x^2 + 15x\)[/tex].
Notice that [tex]\(5x^2 + 15x\)[/tex] has a common factor of [tex]\(5x\)[/tex]. So, we can factor out the [tex]\(5x\)[/tex]:
[tex]\[ 5x^2 + 15x = 5x(x + 3) \][/tex]
3. Write the Rational Expression with the Factors:
Now that we have factored both the numerator and the denominator, we can write:
[tex]\[ \frac{6x^2 - 54}{5x^2 + 15x} = \frac{6(x - 3)(x + 3)}{5x(x + 3)} \][/tex]
4. Simplify by Cancelling Common Factors:
We notice that [tex]\((x + 3)\)[/tex] is a common factor in both the numerator and the denominator, so we can cancel [tex]\((x + 3)\)[/tex] from both:
[tex]\[ \frac{6(x - 3)\cancel{(x + 3)}}{5x\cancel{(x + 3)}} = \frac{6(x - 3)}{5x} \][/tex]
So, the simplified form of the given rational expression is:
[tex]\[ \frac{6(x - 3)}{5x} \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{6(x - 3)}{5x}\)[/tex]
1. Factor the Numerator:
The numerator is [tex]\(6x^2 - 54\)[/tex].
Notice that [tex]\(6x^2 - 54\)[/tex] has a common factor of 6. So, we can factor out the 6:
[tex]\[ 6x^2 - 54 = 6(x^2 - 9) \][/tex]
Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, which can be factored further:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
So, the numerator fully factored is:
[tex]\[ 6(x - 3)(x + 3) \][/tex]
2. Factor the Denominator:
The denominator is [tex]\(5x^2 + 15x\)[/tex].
Notice that [tex]\(5x^2 + 15x\)[/tex] has a common factor of [tex]\(5x\)[/tex]. So, we can factor out the [tex]\(5x\)[/tex]:
[tex]\[ 5x^2 + 15x = 5x(x + 3) \][/tex]
3. Write the Rational Expression with the Factors:
Now that we have factored both the numerator and the denominator, we can write:
[tex]\[ \frac{6x^2 - 54}{5x^2 + 15x} = \frac{6(x - 3)(x + 3)}{5x(x + 3)} \][/tex]
4. Simplify by Cancelling Common Factors:
We notice that [tex]\((x + 3)\)[/tex] is a common factor in both the numerator and the denominator, so we can cancel [tex]\((x + 3)\)[/tex] from both:
[tex]\[ \frac{6(x - 3)\cancel{(x + 3)}}{5x\cancel{(x + 3)}} = \frac{6(x - 3)}{5x} \][/tex]
So, the simplified form of the given rational expression is:
[tex]\[ \frac{6(x - 3)}{5x} \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{6(x - 3)}{5x}\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.