Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To simplify the rational expression [tex]\(\frac{6x^2 - 54}{5x^2 + 15x}\)[/tex], we need to factor both the numerator and the denominator, and then simplify by cancelling common factors.
1. Factor the Numerator:
The numerator is [tex]\(6x^2 - 54\)[/tex].
Notice that [tex]\(6x^2 - 54\)[/tex] has a common factor of 6. So, we can factor out the 6:
[tex]\[ 6x^2 - 54 = 6(x^2 - 9) \][/tex]
Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, which can be factored further:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
So, the numerator fully factored is:
[tex]\[ 6(x - 3)(x + 3) \][/tex]
2. Factor the Denominator:
The denominator is [tex]\(5x^2 + 15x\)[/tex].
Notice that [tex]\(5x^2 + 15x\)[/tex] has a common factor of [tex]\(5x\)[/tex]. So, we can factor out the [tex]\(5x\)[/tex]:
[tex]\[ 5x^2 + 15x = 5x(x + 3) \][/tex]
3. Write the Rational Expression with the Factors:
Now that we have factored both the numerator and the denominator, we can write:
[tex]\[ \frac{6x^2 - 54}{5x^2 + 15x} = \frac{6(x - 3)(x + 3)}{5x(x + 3)} \][/tex]
4. Simplify by Cancelling Common Factors:
We notice that [tex]\((x + 3)\)[/tex] is a common factor in both the numerator and the denominator, so we can cancel [tex]\((x + 3)\)[/tex] from both:
[tex]\[ \frac{6(x - 3)\cancel{(x + 3)}}{5x\cancel{(x + 3)}} = \frac{6(x - 3)}{5x} \][/tex]
So, the simplified form of the given rational expression is:
[tex]\[ \frac{6(x - 3)}{5x} \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{6(x - 3)}{5x}\)[/tex]
1. Factor the Numerator:
The numerator is [tex]\(6x^2 - 54\)[/tex].
Notice that [tex]\(6x^2 - 54\)[/tex] has a common factor of 6. So, we can factor out the 6:
[tex]\[ 6x^2 - 54 = 6(x^2 - 9) \][/tex]
Notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares, which can be factored further:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
So, the numerator fully factored is:
[tex]\[ 6(x - 3)(x + 3) \][/tex]
2. Factor the Denominator:
The denominator is [tex]\(5x^2 + 15x\)[/tex].
Notice that [tex]\(5x^2 + 15x\)[/tex] has a common factor of [tex]\(5x\)[/tex]. So, we can factor out the [tex]\(5x\)[/tex]:
[tex]\[ 5x^2 + 15x = 5x(x + 3) \][/tex]
3. Write the Rational Expression with the Factors:
Now that we have factored both the numerator and the denominator, we can write:
[tex]\[ \frac{6x^2 - 54}{5x^2 + 15x} = \frac{6(x - 3)(x + 3)}{5x(x + 3)} \][/tex]
4. Simplify by Cancelling Common Factors:
We notice that [tex]\((x + 3)\)[/tex] is a common factor in both the numerator and the denominator, so we can cancel [tex]\((x + 3)\)[/tex] from both:
[tex]\[ \frac{6(x - 3)\cancel{(x + 3)}}{5x\cancel{(x + 3)}} = \frac{6(x - 3)}{5x} \][/tex]
So, the simplified form of the given rational expression is:
[tex]\[ \frac{6(x - 3)}{5x} \][/tex]
Therefore, the correct answer is:
A. [tex]\(\frac{6(x - 3)}{5x}\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.