Answered

Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Where does the graph of the function [tex]$y=\tan(x)$[/tex] have asymptotes?

A. At the values of [tex]$x$[/tex] where [tex]$\cos(x)=0$[/tex]
B. At the values of [tex][tex]$x$[/tex][/tex] where [tex]$\sin(x)=0$[/tex]
C. At the values of [tex]$x$[/tex] where [tex]$\cos(x)$[/tex] is undefined
D. At the values of [tex][tex]$x$[/tex][/tex] where [tex]$\sin(x)$[/tex] is undefined


Sagot :

The graph of the function [tex]\( y = \tan(x) \)[/tex] has asymptotes at the values of [tex]\( x \)[/tex] where the function is undefined. Let's go through the detailed reasoning step-by-step:

1. Definition of the Tangent Function:

The tangent function is defined as:
[tex]\[ y = \tan(x) = \frac{\sin(x)}{\cos(x)} \][/tex]

2. Undefined Points of [tex]\( \tan(x) \)[/tex]:

The tangent function will be undefined wherever the denominator (i.e., [tex]\( \cos(x) \)[/tex]) is equal to zero. This is because division by zero is undefined in mathematics.

3. Condition for Asymptotes:

So, to determine where [tex]\( y = \tan(x) \)[/tex] is undefined, we set the denominator equal to zero:
[tex]\[ \cos(x) = 0 \][/tex]

4. Solutions to [tex]\( \cos(x) = 0 \)[/tex]:

The values of [tex]\( x \)[/tex] where [tex]\( \cos(x) = 0 \)[/tex] can be found within one period of the cosine function, which is [tex]\( 2\pi \)[/tex]. For [tex]\( \cos(x) \)[/tex], these values are:
[tex]\[ x = \frac{\pi}{2} + k\pi \quad \text{for} \quad k \in \mathbb{Z} \][/tex]
Here, [tex]\( k \)[/tex] is any integer, meaning [tex]\( x \)[/tex] occurs at [tex]\( \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots \)[/tex] and so on.

5. Conclusion:

Therefore, the graph of [tex]\( y = \tan(x) \)[/tex] has vertical asymptotes at the values of [tex]\( x \)[/tex] where [tex]\( \cos(x) = 0 \)[/tex].

The correct answer is:
- at the values of [tex]\( x \)[/tex] where [tex]\( \cos(x) = 0 \)[/tex]