Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the correct expression for the equilibrium constant ([tex]\(K\)[/tex]) for the given chemical reaction:
[tex]\[ COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g) \][/tex]
we need to consider the general form for the equilibrium constant expression, which is given by:
[tex]\[ K = \frac{[ \text{products} ]}{[ \text{reactants} ]} \][/tex]
Each concentration term is raised to the power of its stoichiometric coefficient in the balanced chemical equation. The balanced chemical equation given is:
[tex]\[ COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g) \][/tex]
Here, the stoichiometric coefficients are:
- 1 for [tex]\(COCl_2(g)\)[/tex]
- 1 for [tex]\(CO(g)\)[/tex]
- 1 for [tex]\(Cl_2(g)\)[/tex]
Based on these coefficients, the equilibrium expression becomes:
[tex]\[ K = \frac{[CO][Cl_2]}{[COCl_2]} \][/tex]
Now, let's match this result with the given options:
1. [tex]\(K = \frac{\left[ COCl_2\right]^2}{[ CO ]\left[ Cl_2\right]}\)[/tex]
2. [tex]\(K = \frac{\left[ COCl_2\right]}{[ CO ]\left[ Cl_2\right]}\)[/tex]
3. [tex]\(K = \frac{\left[ CO\right][\left[Cl_2\right]}{\left[COCl_2 \right]} \)[/tex]
4. [tex]\(K = \frac{[ CO ]\left[ Cl_2\right]}{\left[ COCl_2\right]^2}\)[/tex]
The correct option is:
[tex]\[ K = \frac{[CO][Cl_2]}{[COCl_2]} \][/tex]
Thus, the correct answer is:
[tex]\(K=\frac{\left[ CO \right]\left[ Cl_2 \right]}{\left[ COCl_2 \right]}\)[/tex]
Which corresponds to option 3.
[tex]\[ COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g) \][/tex]
we need to consider the general form for the equilibrium constant expression, which is given by:
[tex]\[ K = \frac{[ \text{products} ]}{[ \text{reactants} ]} \][/tex]
Each concentration term is raised to the power of its stoichiometric coefficient in the balanced chemical equation. The balanced chemical equation given is:
[tex]\[ COCl_2(g) \Leftrightarrow CO(g) + Cl_2(g) \][/tex]
Here, the stoichiometric coefficients are:
- 1 for [tex]\(COCl_2(g)\)[/tex]
- 1 for [tex]\(CO(g)\)[/tex]
- 1 for [tex]\(Cl_2(g)\)[/tex]
Based on these coefficients, the equilibrium expression becomes:
[tex]\[ K = \frac{[CO][Cl_2]}{[COCl_2]} \][/tex]
Now, let's match this result with the given options:
1. [tex]\(K = \frac{\left[ COCl_2\right]^2}{[ CO ]\left[ Cl_2\right]}\)[/tex]
2. [tex]\(K = \frac{\left[ COCl_2\right]}{[ CO ]\left[ Cl_2\right]}\)[/tex]
3. [tex]\(K = \frac{\left[ CO\right][\left[Cl_2\right]}{\left[COCl_2 \right]} \)[/tex]
4. [tex]\(K = \frac{[ CO ]\left[ Cl_2\right]}{\left[ COCl_2\right]^2}\)[/tex]
The correct option is:
[tex]\[ K = \frac{[CO][Cl_2]}{[COCl_2]} \][/tex]
Thus, the correct answer is:
[tex]\(K=\frac{\left[ CO \right]\left[ Cl_2 \right]}{\left[ COCl_2 \right]}\)[/tex]
Which corresponds to option 3.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.