Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the impact of increasing pressure on the equilibrium of the chemical reaction
[tex]\[ \text{CH}_4(g) + \text{H}_2\text{O}(g) \Leftrightarrow \text{CO}(g) + 3\text{H}_2(g) \][/tex]
we need to apply Le Chatelier's principle. Le Chatelier's principle states that when a system at equilibrium is subjected to a change in pressure, the system will adjust itself to counteract the change and reestablish equilibrium. Specifically, if the pressure is increased, the equilibrium shifts towards the side with fewer moles of gas, thereby reducing the pressure.
Let's analyze the number of moles of gas on each side of the reaction:
- Reactants side (left side):
- CH[tex]\(_4\)[/tex](g): 1 mole
- H[tex]\(_2\)[/tex]O(g): 1 mole
- Total moles of gas on the reactants side: [tex]\(1 + 1 = 2\)[/tex] moles
- Products side (right side):
- CO(g): 1 mole
- 3H[tex]\(_2\)[/tex](g): 3 moles
- Total moles of gas on the products side: [tex]\(1 + 3 = 4\)[/tex] moles
When the pressure increases, the equilibrium will shift towards the side with fewer moles of gas to reduce the pressure. By comparing the total moles of gas on both sides:
- Reactants side: 2 moles
- Products side: 4 moles
Since there are fewer moles of gas on the reactants side (2 moles) compared to the products side (4 moles), the equilibrium will shift towards the reactants side (left side).
Therefore, the equilibrium will shift to the left to favor the reverse reaction.
The correct answer is:
The equilibrium will shift to the left to favor the reverse reaction.
[tex]\[ \text{CH}_4(g) + \text{H}_2\text{O}(g) \Leftrightarrow \text{CO}(g) + 3\text{H}_2(g) \][/tex]
we need to apply Le Chatelier's principle. Le Chatelier's principle states that when a system at equilibrium is subjected to a change in pressure, the system will adjust itself to counteract the change and reestablish equilibrium. Specifically, if the pressure is increased, the equilibrium shifts towards the side with fewer moles of gas, thereby reducing the pressure.
Let's analyze the number of moles of gas on each side of the reaction:
- Reactants side (left side):
- CH[tex]\(_4\)[/tex](g): 1 mole
- H[tex]\(_2\)[/tex]O(g): 1 mole
- Total moles of gas on the reactants side: [tex]\(1 + 1 = 2\)[/tex] moles
- Products side (right side):
- CO(g): 1 mole
- 3H[tex]\(_2\)[/tex](g): 3 moles
- Total moles of gas on the products side: [tex]\(1 + 3 = 4\)[/tex] moles
When the pressure increases, the equilibrium will shift towards the side with fewer moles of gas to reduce the pressure. By comparing the total moles of gas on both sides:
- Reactants side: 2 moles
- Products side: 4 moles
Since there are fewer moles of gas on the reactants side (2 moles) compared to the products side (4 moles), the equilibrium will shift towards the reactants side (left side).
Therefore, the equilibrium will shift to the left to favor the reverse reaction.
The correct answer is:
The equilibrium will shift to the left to favor the reverse reaction.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.