Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is the product of the rational expressions shown below? Make sure your answer is in reduced form.

[tex]\[
\frac{x+1}{x-4} \cdot \frac{5x}{x+1}
\][/tex]

A. [tex]\(\frac{5x}{x+1}\)[/tex]
B. [tex]\(\frac{5}{x-4}\)[/tex]
C. [tex]\(\frac{5}{x+1}\)[/tex]
D. [tex]\(\frac{5x}{x-4}\)[/tex]


Sagot :

Sure, let's determine the product of the given rational expressions step-by-step and simplify the result.

We have the product of two rational expressions:

[tex]\[ \frac{x+1}{x-4} \cdot \frac{5 x}{x+1} \][/tex]

### Step-by-Step Solution:

1. Write down the given expressions:

[tex]\[ \frac{x+1}{x-4} \cdot \frac{5 x}{x+1} \][/tex]

2. Multiply the numerators together:

The numerators are [tex]\((x + 1)\)[/tex] and [tex]\(5x\)[/tex]. Multiplying these together, we get:

[tex]\[ (x + 1) \cdot 5x = 5x \cdot (x + 1) \][/tex]

3. Multiply the denominators together:

The denominators are [tex]\((x - 4)\)[/tex] and [tex]\((x + 1)\)[/tex]. Multiplying these together, we get:

[tex]\[ (x - 4) \cdot (x + 1) \][/tex]

4. Construct the new fraction with the multiplied numerators and denominators:

[tex]\[ \frac{5x \cdot (x + 1)}{(x - 4) \cdot (x + 1)} \][/tex]

5. Simplify the fraction by canceling common factors in the numerator and the denominator:

The factor [tex]\((x + 1)\)[/tex] is present in both the numerator and the denominator. So we can cancel them out:

[tex]\[ \frac{5x \cdot \cancel{(x + 1)}}{(x - 4) \cdot \cancel{(x + 1)}} = \frac{5x}{x - 4} \][/tex]

6. Write the simplified expression:

[tex]\[ \frac{5x}{x - 4} \][/tex]

### Final Result:
The simplified product of the rational expressions is:

[tex]\[ \boxed{\frac{5 x}{x-4}} \][/tex]

So, the correct choice is [tex]\(\boxed{D}\)[/tex].