Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the end behavior of the polynomial function [tex]\( f(x) = 2x^3 - 3x^2 + 5x - 1 \)[/tex], we need to analyze the term that has the highest power, which dominates the behavior of the polynomial as [tex]\( x \to +\infty \)[/tex] and [tex]\( x \to -\infty \)[/tex].
1. Identify the highest degree term:
The polynomial function provided is [tex]\( f(x) = 2x^3 - 3x^2 + 5x - 1 \)[/tex]. The highest degree term here is [tex]\( 2x^3 \)[/tex].
2. Analyze the behavior as [tex]\( x \to +\infty \)[/tex]:
When [tex]\( x \to +\infty \)[/tex], the [tex]\( x^3 \)[/tex] term will dominate the polynomial because it grows faster than the other terms. Since the coefficient of [tex]\( x^3 \)[/tex] is positive (i.e., [tex]\( 2 \)[/tex]), as [tex]\( x \to +\infty \)[/tex], the [tex]\( 2x^3 \)[/tex] term will also grow to [tex]\( +\infty \)[/tex]. Therefore, [tex]\( f(x) \to +\infty \)[/tex] as [tex]\( x \to +\infty \)[/tex].
3. Analyze the behavior as [tex]\( x \to -\infty \)[/tex]:
Similarly, when [tex]\( x \to -\infty \)[/tex], the [tex]\( x^3 \)[/tex] term still dominates the behavior of the polynomial. However, the key difference is that the term [tex]\( x^3 \)[/tex] will now take very large negative values because raising a negative number to an odd power results in a negative number. Since the coefficient of [tex]\( x^3 \)[/tex] is positive, as [tex]\( x \to -\infty \)[/tex], the [tex]\( 2x^3 \)[/tex] term will grow to [tex]\( -\infty \)[/tex]. Therefore, [tex]\( f(x) \to -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
Combining these observations, the end behavior of the polynomial function [tex]\( f(x) = 2x^3 - 3x^2 + 5x - 1 \)[/tex] is as follows:
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to +\infty \)[/tex].
In conclusion, the correct identification of the end behavior for the polynomial function is:
[tex]\[ \begin{array}{r} f(x) = 2x^3 - 3x^2 + 5x - 1 \\ f(x) \to -\infty \text{ as } x \to -\infty \\ f(x) \to +\infty \text{ as } x \to +\infty \end{array} \][/tex]
1. Identify the highest degree term:
The polynomial function provided is [tex]\( f(x) = 2x^3 - 3x^2 + 5x - 1 \)[/tex]. The highest degree term here is [tex]\( 2x^3 \)[/tex].
2. Analyze the behavior as [tex]\( x \to +\infty \)[/tex]:
When [tex]\( x \to +\infty \)[/tex], the [tex]\( x^3 \)[/tex] term will dominate the polynomial because it grows faster than the other terms. Since the coefficient of [tex]\( x^3 \)[/tex] is positive (i.e., [tex]\( 2 \)[/tex]), as [tex]\( x \to +\infty \)[/tex], the [tex]\( 2x^3 \)[/tex] term will also grow to [tex]\( +\infty \)[/tex]. Therefore, [tex]\( f(x) \to +\infty \)[/tex] as [tex]\( x \to +\infty \)[/tex].
3. Analyze the behavior as [tex]\( x \to -\infty \)[/tex]:
Similarly, when [tex]\( x \to -\infty \)[/tex], the [tex]\( x^3 \)[/tex] term still dominates the behavior of the polynomial. However, the key difference is that the term [tex]\( x^3 \)[/tex] will now take very large negative values because raising a negative number to an odd power results in a negative number. Since the coefficient of [tex]\( x^3 \)[/tex] is positive, as [tex]\( x \to -\infty \)[/tex], the [tex]\( 2x^3 \)[/tex] term will grow to [tex]\( -\infty \)[/tex]. Therefore, [tex]\( f(x) \to -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex].
Combining these observations, the end behavior of the polynomial function [tex]\( f(x) = 2x^3 - 3x^2 + 5x - 1 \)[/tex] is as follows:
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to +\infty \)[/tex], [tex]\( f(x) \to +\infty \)[/tex].
In conclusion, the correct identification of the end behavior for the polynomial function is:
[tex]\[ \begin{array}{r} f(x) = 2x^3 - 3x^2 + 5x - 1 \\ f(x) \to -\infty \text{ as } x \to -\infty \\ f(x) \to +\infty \text{ as } x \to +\infty \end{array} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.