Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at 600 K, we will use the given equilibrium concentrations. The balanced chemical equation for the reaction is:
[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]
The expression for the equilibrium constant [tex]\( K_c \)[/tex] is given by the concentrations of the products divided by the concentrations of the reactants, each raised to the power of their respective coefficients in the balanced equation.
[tex]\[ K_c = \frac{[H_2O][CO]}{[H_2][CO_2]} \][/tex]
Substitute the given equilibrium concentrations into this expression:
[tex]\[ [CO_2] = 9.5 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ [H_2] = 4.5 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [H_2O] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
[tex]\[ [CO] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
So,
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})(4.6 \times 10^{-3})}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
This calculation results in:
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})^2}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
[tex]\[ K_c = \frac{2.116 \times 10^{-5}}{4.275 \times 10^{-5}} \][/tex]
[tex]\[ K_c \approx 0.495 \][/tex]
Converting this to scientific notation, we obtain:
[tex]\[ K_c \approx 4.9 \times 10^{-1} \][/tex]
Therefore, the value of the equilibrium constant for this reaction is [tex]\( 4.9 \times 10^{-1} \)[/tex]. So, the correct answer is:
[tex]\[ 4.9 \times 10^{-1} \][/tex]
[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]
The expression for the equilibrium constant [tex]\( K_c \)[/tex] is given by the concentrations of the products divided by the concentrations of the reactants, each raised to the power of their respective coefficients in the balanced equation.
[tex]\[ K_c = \frac{[H_2O][CO]}{[H_2][CO_2]} \][/tex]
Substitute the given equilibrium concentrations into this expression:
[tex]\[ [CO_2] = 9.5 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ [H_2] = 4.5 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [H_2O] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
[tex]\[ [CO] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
So,
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})(4.6 \times 10^{-3})}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
This calculation results in:
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})^2}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
[tex]\[ K_c = \frac{2.116 \times 10^{-5}}{4.275 \times 10^{-5}} \][/tex]
[tex]\[ K_c \approx 0.495 \][/tex]
Converting this to scientific notation, we obtain:
[tex]\[ K_c \approx 4.9 \times 10^{-1} \][/tex]
Therefore, the value of the equilibrium constant for this reaction is [tex]\( 4.9 \times 10^{-1} \)[/tex]. So, the correct answer is:
[tex]\[ 4.9 \times 10^{-1} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.