Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Consider the reaction below:
[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]

At equilibrium at 600 K, the following are true:
[tex]\[
\begin{array}{l}
\left[ CO_2 \right] = 9.5 \times 10^{-4} \, \text{M} \\
\left[ H_2 \right] = 4.5 \times 10^{-2} \, \text{M} \\
\left[ H_2O \right] = 4.6 \times 10^{-3} \, \text{M} \\
\left[ CO \right] = 4.6 \times 10^{-3} \, \text{M}
\end{array}
\][/tex]

What is the value of the equilibrium constant for this reaction in correct scientific notation?

A. [tex]\(4.9 \times 10^{-3}\)[/tex]

B. [tex]\(4.9 \times 10^{-2}\)[/tex]

C. [tex]\(4.9 \times 10^{-1}\)[/tex]

D. [tex]\(4.9 \times 10^3\)[/tex]


Sagot :

To determine the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at 600 K, we will use the given equilibrium concentrations. The balanced chemical equation for the reaction is:

[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]

The expression for the equilibrium constant [tex]\( K_c \)[/tex] is given by the concentrations of the products divided by the concentrations of the reactants, each raised to the power of their respective coefficients in the balanced equation.

[tex]\[ K_c = \frac{[H_2O][CO]}{[H_2][CO_2]} \][/tex]

Substitute the given equilibrium concentrations into this expression:

[tex]\[ [CO_2] = 9.5 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ [H_2] = 4.5 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [H_2O] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
[tex]\[ [CO] = 4.6 \times 10^{-3} \, \text{M} \][/tex]

So,

[tex]\[ K_c = \frac{(4.6 \times 10^{-3})(4.6 \times 10^{-3})}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]

This calculation results in:

[tex]\[ K_c = \frac{(4.6 \times 10^{-3})^2}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]

[tex]\[ K_c = \frac{2.116 \times 10^{-5}}{4.275 \times 10^{-5}} \][/tex]

[tex]\[ K_c \approx 0.495 \][/tex]

Converting this to scientific notation, we obtain:

[tex]\[ K_c \approx 4.9 \times 10^{-1} \][/tex]

Therefore, the value of the equilibrium constant for this reaction is [tex]\( 4.9 \times 10^{-1} \)[/tex]. So, the correct answer is:

[tex]\[ 4.9 \times 10^{-1} \][/tex]