Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equilibrium constant [tex]\( K_c \)[/tex] for the reaction at 600 K, we will use the given equilibrium concentrations. The balanced chemical equation for the reaction is:
[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]
The expression for the equilibrium constant [tex]\( K_c \)[/tex] is given by the concentrations of the products divided by the concentrations of the reactants, each raised to the power of their respective coefficients in the balanced equation.
[tex]\[ K_c = \frac{[H_2O][CO]}{[H_2][CO_2]} \][/tex]
Substitute the given equilibrium concentrations into this expression:
[tex]\[ [CO_2] = 9.5 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ [H_2] = 4.5 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [H_2O] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
[tex]\[ [CO] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
So,
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})(4.6 \times 10^{-3})}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
This calculation results in:
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})^2}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
[tex]\[ K_c = \frac{2.116 \times 10^{-5}}{4.275 \times 10^{-5}} \][/tex]
[tex]\[ K_c \approx 0.495 \][/tex]
Converting this to scientific notation, we obtain:
[tex]\[ K_c \approx 4.9 \times 10^{-1} \][/tex]
Therefore, the value of the equilibrium constant for this reaction is [tex]\( 4.9 \times 10^{-1} \)[/tex]. So, the correct answer is:
[tex]\[ 4.9 \times 10^{-1} \][/tex]
[tex]\[ H_2(g) + CO_2(g) \rightarrow H_2O(g) + CO(g) \][/tex]
The expression for the equilibrium constant [tex]\( K_c \)[/tex] is given by the concentrations of the products divided by the concentrations of the reactants, each raised to the power of their respective coefficients in the balanced equation.
[tex]\[ K_c = \frac{[H_2O][CO]}{[H_2][CO_2]} \][/tex]
Substitute the given equilibrium concentrations into this expression:
[tex]\[ [CO_2] = 9.5 \times 10^{-4} \, \text{M} \][/tex]
[tex]\[ [H_2] = 4.5 \times 10^{-2} \, \text{M} \][/tex]
[tex]\[ [H_2O] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
[tex]\[ [CO] = 4.6 \times 10^{-3} \, \text{M} \][/tex]
So,
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})(4.6 \times 10^{-3})}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
This calculation results in:
[tex]\[ K_c = \frac{(4.6 \times 10^{-3})^2}{(4.5 \times 10^{-2})(9.5 \times 10^{-4})} \][/tex]
[tex]\[ K_c = \frac{2.116 \times 10^{-5}}{4.275 \times 10^{-5}} \][/tex]
[tex]\[ K_c \approx 0.495 \][/tex]
Converting this to scientific notation, we obtain:
[tex]\[ K_c \approx 4.9 \times 10^{-1} \][/tex]
Therefore, the value of the equilibrium constant for this reaction is [tex]\( 4.9 \times 10^{-1} \)[/tex]. So, the correct answer is:
[tex]\[ 4.9 \times 10^{-1} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.