Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's evaluate the sums of the given sequences step-by-step:
### First Sequence: [tex]\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\)[/tex]
This is a geometric sequence where:
- The first term [tex]\(a_1\)[/tex] is [tex]\(1\)[/tex].
- The common ratio [tex]\(r_1\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
To find the sum of an infinite geometric series, we use the formula:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
For our sequence:
- [tex]\(a_1 = 1\)[/tex]
- [tex]\(r_1 = \frac{1}{2}\)[/tex]
Plugging these values into the formula, we get:
[tex]\[ S_1 = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Thus, the sum of the first sequence is:
[tex]\[ S_1 = 2.0 \][/tex]
### Second Sequence: [tex]\(8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}\)[/tex]
This is another geometric sequence where:
- The first term [tex]\(a_2\)[/tex] is [tex]\(8\)[/tex].
- The common ratio [tex]\(r_2\)[/tex] is also [tex]\(\frac{1}{2}\)[/tex].
Using the same formula for the sum of an infinite geometric series:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
For this sequence:
- [tex]\(a_2 = 8\)[/tex]
- [tex]\(r_2 = \frac{1}{2}\)[/tex]
Plugging these values in, we get:
[tex]\[ S_2 = \frac{8}{1 - \frac{1}{2}} = \frac{8}{\frac{1}{2}} = 16 \][/tex]
Thus, the sum of the second sequence is:
[tex]\[ S_2 = 16.0 \][/tex]
### Summary
- The sum of the sequence [tex]\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\)[/tex] is [tex]\(2.0\)[/tex].
- The sum of the sequence [tex]\(8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}\)[/tex] is [tex]\(16.0\)[/tex].
### First Sequence: [tex]\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\)[/tex]
This is a geometric sequence where:
- The first term [tex]\(a_1\)[/tex] is [tex]\(1\)[/tex].
- The common ratio [tex]\(r_1\)[/tex] is [tex]\(\frac{1}{2}\)[/tex].
To find the sum of an infinite geometric series, we use the formula:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
For our sequence:
- [tex]\(a_1 = 1\)[/tex]
- [tex]\(r_1 = \frac{1}{2}\)[/tex]
Plugging these values into the formula, we get:
[tex]\[ S_1 = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2 \][/tex]
Thus, the sum of the first sequence is:
[tex]\[ S_1 = 2.0 \][/tex]
### Second Sequence: [tex]\(8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}\)[/tex]
This is another geometric sequence where:
- The first term [tex]\(a_2\)[/tex] is [tex]\(8\)[/tex].
- The common ratio [tex]\(r_2\)[/tex] is also [tex]\(\frac{1}{2}\)[/tex].
Using the same formula for the sum of an infinite geometric series:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
For this sequence:
- [tex]\(a_2 = 8\)[/tex]
- [tex]\(r_2 = \frac{1}{2}\)[/tex]
Plugging these values in, we get:
[tex]\[ S_2 = \frac{8}{1 - \frac{1}{2}} = \frac{8}{\frac{1}{2}} = 16 \][/tex]
Thus, the sum of the second sequence is:
[tex]\[ S_2 = 16.0 \][/tex]
### Summary
- The sum of the sequence [tex]\(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\)[/tex] is [tex]\(2.0\)[/tex].
- The sum of the sequence [tex]\(8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}\)[/tex] is [tex]\(16.0\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.