Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, we need to determine the correct statement describing the pre-image segment [tex]\( \overline{YZ} \)[/tex] after a dilation transformation from the segment [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
1. Calculate the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex]:
The endpoints of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] are given as [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex].
The length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is calculated using the distance formula:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Plugging in the coordinates [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex]:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(-6 - 0)^2 + (3 - 3)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \][/tex]
Therefore, the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex] units.
2. Determine the dilation transformation:
The problem states that [tex]\( \overline{YZ} \)[/tex] was dilated by a scale factor of [tex]\( 3 \)[/tex] from the origin.
Therefore, if the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex], then the length of [tex]\( \overline{YZ} \)[/tex] after dilation will be:
[tex]\[ \text{Length of } \overline{YZ} = 6 \times 3 = 18 \][/tex]
3. Verify the coordinates of [tex]\( \overline{YZ} \)[/tex]:
- Option 1: [tex]\( \overline{YZ} \)[/tex] is located at [tex]\( Y(0, 9) \)[/tex] and [tex]\( Z(-18, 9) \)[/tex]
Length: [tex]\( \sqrt{(-18 - 0)^2 + (9 - 9)^2} = \sqrt{(-18)^2 + 0^2} = \sqrt{324} = 18 \)[/tex]
This matches the calculated length of [tex]\( 18 \)[/tex] and also accurately reflects that [tex]\( \overline{YZ} \)[/tex] is three times the size of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
- Other options:
- Option 2: [tex]\( Y(0, 3) \)[/tex] and [tex]\( Z(-6, 3) \)[/tex]
This matches [tex]\( Y^{\prime} \)[/tex] and [tex]\( Z^{\prime} \)[/tex], so it would be the same size as [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex], not three times.
- Option 3: [tex]\( Y(0, 1.5) \)[/tex] and [tex]\( Z(-3, 1.5) \)[/tex]
Length: [tex]\( \sqrt{(-3 - 0)^2 + (1.5 - 1.5)^2} = 3 \)[/tex], which is one-half, not three times.
- Option 4: [tex]\( Y(0, 1) \)[/tex] and [tex]\( Z(-2, 1) \)[/tex]
Length: [tex]\( \sqrt{(-2 - 0)^2 + (1 - 1)^2} = 2 \)[/tex], which is one-third, not three times.
Therefore, the correct statement is:
[tex]\[ \overline{YZ} \text{ is located at } Y(0, 9) \text{ and } Z(-18, 9) \text{ and is three times the size of } \overline{Y^{\prime} Z^{\prime}} \][/tex]
So the correct answer is option 1.
1. Calculate the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex]:
The endpoints of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] are given as [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex].
The length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is calculated using the distance formula:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Plugging in the coordinates [tex]\( Y^{\prime}(0, 3) \)[/tex] and [tex]\( Z^{\prime}(-6, 3) \)[/tex]:
[tex]\[ \text{Length of } \overline{Y^{\prime} Z^{\prime}} = \sqrt{(-6 - 0)^2 + (3 - 3)^2} = \sqrt{(-6)^2 + 0^2} = \sqrt{36} = 6 \][/tex]
Therefore, the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex] units.
2. Determine the dilation transformation:
The problem states that [tex]\( \overline{YZ} \)[/tex] was dilated by a scale factor of [tex]\( 3 \)[/tex] from the origin.
Therefore, if the length of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex] is [tex]\( 6 \)[/tex], then the length of [tex]\( \overline{YZ} \)[/tex] after dilation will be:
[tex]\[ \text{Length of } \overline{YZ} = 6 \times 3 = 18 \][/tex]
3. Verify the coordinates of [tex]\( \overline{YZ} \)[/tex]:
- Option 1: [tex]\( \overline{YZ} \)[/tex] is located at [tex]\( Y(0, 9) \)[/tex] and [tex]\( Z(-18, 9) \)[/tex]
Length: [tex]\( \sqrt{(-18 - 0)^2 + (9 - 9)^2} = \sqrt{(-18)^2 + 0^2} = \sqrt{324} = 18 \)[/tex]
This matches the calculated length of [tex]\( 18 \)[/tex] and also accurately reflects that [tex]\( \overline{YZ} \)[/tex] is three times the size of [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex].
- Other options:
- Option 2: [tex]\( Y(0, 3) \)[/tex] and [tex]\( Z(-6, 3) \)[/tex]
This matches [tex]\( Y^{\prime} \)[/tex] and [tex]\( Z^{\prime} \)[/tex], so it would be the same size as [tex]\( \overline{Y^{\prime} Z^{\prime}} \)[/tex], not three times.
- Option 3: [tex]\( Y(0, 1.5) \)[/tex] and [tex]\( Z(-3, 1.5) \)[/tex]
Length: [tex]\( \sqrt{(-3 - 0)^2 + (1.5 - 1.5)^2} = 3 \)[/tex], which is one-half, not three times.
- Option 4: [tex]\( Y(0, 1) \)[/tex] and [tex]\( Z(-2, 1) \)[/tex]
Length: [tex]\( \sqrt{(-2 - 0)^2 + (1 - 1)^2} = 2 \)[/tex], which is one-third, not three times.
Therefore, the correct statement is:
[tex]\[ \overline{YZ} \text{ is located at } Y(0, 9) \text{ and } Z(-18, 9) \text{ and is three times the size of } \overline{Y^{\prime} Z^{\prime}} \][/tex]
So the correct answer is option 1.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.