Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the standard form of the polynomial [tex]\(9 x^2 y-4 x+3 y^3 x-2 y^2\)[/tex], we need to arrange the polynomial in descending order of the variables and their respective powers. Here's how you can approach the task step by step:
1. Identify all the terms:
The given polynomial has the following terms:
[tex]\[ 9 x^2 y, -4 x, 3 y^3 x, -2 y^2 \][/tex]
2. Classify each term by the combined degree of variables (considering each variable individually and in combination):
- [tex]\(9 x^2 y\)[/tex]: The combined degree is [tex]\(2 + 1 = 3\)[/tex].
- [tex]\(-4 x\)[/tex]: The combined degree is [tex]\(1\)[/tex] (since it’s only in terms of [tex]\(x\)[/tex], no [tex]\(y\)[/tex]).
- [tex]\(3 y^3 x\)[/tex]: The combined degree is [tex]\(3 + 1 = 4\)[/tex].
- [tex]\(-2 y^2\)[/tex]: The combined degree is [tex]\(2\)[/tex] (since it’s only in terms of [tex]\(y\)[/tex], no [tex]\(x\)[/tex]).
3. Arrange the terms in descending order based on the combined degree:
- Highest combined degree first: [tex]\(3 y^3 x\)[/tex] (combined degree = 4)
- Next highest combined degree: [tex]\(9 x^2 y\)[/tex] (combined degree = 3)
- Next term: [tex]\(-2 y^2\)[/tex] (combined degree = 2)
- Last: [tex]\(-4 x\)[/tex] (combined degree = 1)
4. Write the polynomial in descending order:
After organizing the terms, the standard form is:
[tex]\[ 3 y^3 x + 9 x^2 y - 2 y^2 - 4 x \][/tex]
5. Match this with the provided options:
- Option 1: [tex]\(9 x^2 y-4 x+3 y^3 x-2 y^2\)[/tex]
- Option 2: [tex]\(3 y^3 x-2 y^2+9 x^2 y-4 x\)[/tex]
- Option 3: [tex]\(9 x^2 y-4 x-2 y^2+3 y^3 x\)[/tex]
- Option 4: [tex]\(3 y^3 x+9 x^2 y-2 y^2-4 x\)[/tex]
From this analysis, the correct match for the standard form of [tex]\(9 x^2 y-4 x+3 y^3 x-2 y^2\)[/tex] is:
[tex]\[\boxed{4}\][/tex]
1. Identify all the terms:
The given polynomial has the following terms:
[tex]\[ 9 x^2 y, -4 x, 3 y^3 x, -2 y^2 \][/tex]
2. Classify each term by the combined degree of variables (considering each variable individually and in combination):
- [tex]\(9 x^2 y\)[/tex]: The combined degree is [tex]\(2 + 1 = 3\)[/tex].
- [tex]\(-4 x\)[/tex]: The combined degree is [tex]\(1\)[/tex] (since it’s only in terms of [tex]\(x\)[/tex], no [tex]\(y\)[/tex]).
- [tex]\(3 y^3 x\)[/tex]: The combined degree is [tex]\(3 + 1 = 4\)[/tex].
- [tex]\(-2 y^2\)[/tex]: The combined degree is [tex]\(2\)[/tex] (since it’s only in terms of [tex]\(y\)[/tex], no [tex]\(x\)[/tex]).
3. Arrange the terms in descending order based on the combined degree:
- Highest combined degree first: [tex]\(3 y^3 x\)[/tex] (combined degree = 4)
- Next highest combined degree: [tex]\(9 x^2 y\)[/tex] (combined degree = 3)
- Next term: [tex]\(-2 y^2\)[/tex] (combined degree = 2)
- Last: [tex]\(-4 x\)[/tex] (combined degree = 1)
4. Write the polynomial in descending order:
After organizing the terms, the standard form is:
[tex]\[ 3 y^3 x + 9 x^2 y - 2 y^2 - 4 x \][/tex]
5. Match this with the provided options:
- Option 1: [tex]\(9 x^2 y-4 x+3 y^3 x-2 y^2\)[/tex]
- Option 2: [tex]\(3 y^3 x-2 y^2+9 x^2 y-4 x\)[/tex]
- Option 3: [tex]\(9 x^2 y-4 x-2 y^2+3 y^3 x\)[/tex]
- Option 4: [tex]\(3 y^3 x+9 x^2 y-2 y^2-4 x\)[/tex]
From this analysis, the correct match for the standard form of [tex]\(9 x^2 y-4 x+3 y^3 x-2 y^2\)[/tex] is:
[tex]\[\boxed{4}\][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.