Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex], we follow these steps:
1. Identify the Form: The integrand [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex] suggests that we may need to use substitution to simplify the expression.
2. Substitution: Consider the substitution [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. This transforms parts of the integrand accordingly.
3. Rewriting Integral: When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex]. When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
[tex]\[ \int_{4}^{8} \frac{2x}{\sqrt{u}} \frac{du}{2x} + \int_{4}^{8} \frac{1}{\sqrt{u}} du \][/tex]
Simplifying within the integral context, it separates as:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} du + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} dx \][/tex]
4. Solving Each Integral:
- First integral: [tex]\(\int_{4}^{8} \frac{1}{\sqrt{u}} \, du\)[/tex]
[tex]\[ \int_{4}^{8} u^{-1/2} \, du = 2 u^{1/2} \Big|_{4}^{8} \][/tex]
Calculating this result:
[tex]\[ = 2\sqrt{8} - 2\sqrt{4} = 4\sqrt{2} - 4 \][/tex]
- Second integral: [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]
For this, set [tex]\(u = x^2 + 4\)[/tex] and then:
[tex]\[ = \int_{4}^{8} u^{-1/2} \cdot \frac{du}{2x} + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}} dx = \log(1 + \sqrt{2}) \][/tex]
5. Combining Results: The results from both solved integrals sum up:
[tex]\[ \int_4^8 \frac{1}{\sqrt{u}} \, du + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}}dx = -4 + log(1 + \sqrt(2)) + 4\sqrt{2} \][/tex]
Thus, the value of the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] is [tex]\[-4 + \log(1 + \sqrt{2}) + 4\sqrt{2}\][/tex].
1. Identify the Form: The integrand [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex] suggests that we may need to use substitution to simplify the expression.
2. Substitution: Consider the substitution [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. This transforms parts of the integrand accordingly.
3. Rewriting Integral: When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex]. When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
[tex]\[ \int_{4}^{8} \frac{2x}{\sqrt{u}} \frac{du}{2x} + \int_{4}^{8} \frac{1}{\sqrt{u}} du \][/tex]
Simplifying within the integral context, it separates as:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} du + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} dx \][/tex]
4. Solving Each Integral:
- First integral: [tex]\(\int_{4}^{8} \frac{1}{\sqrt{u}} \, du\)[/tex]
[tex]\[ \int_{4}^{8} u^{-1/2} \, du = 2 u^{1/2} \Big|_{4}^{8} \][/tex]
Calculating this result:
[tex]\[ = 2\sqrt{8} - 2\sqrt{4} = 4\sqrt{2} - 4 \][/tex]
- Second integral: [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]
For this, set [tex]\(u = x^2 + 4\)[/tex] and then:
[tex]\[ = \int_{4}^{8} u^{-1/2} \cdot \frac{du}{2x} + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}} dx = \log(1 + \sqrt{2}) \][/tex]
5. Combining Results: The results from both solved integrals sum up:
[tex]\[ \int_4^8 \frac{1}{\sqrt{u}} \, du + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}}dx = -4 + log(1 + \sqrt(2)) + 4\sqrt{2} \][/tex]
Thus, the value of the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] is [tex]\[-4 + \log(1 + \sqrt{2}) + 4\sqrt{2}\][/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.