At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex], we follow these steps:
1. Identify the Form: The integrand [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex] suggests that we may need to use substitution to simplify the expression.
2. Substitution: Consider the substitution [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. This transforms parts of the integrand accordingly.
3. Rewriting Integral: When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex]. When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
[tex]\[ \int_{4}^{8} \frac{2x}{\sqrt{u}} \frac{du}{2x} + \int_{4}^{8} \frac{1}{\sqrt{u}} du \][/tex]
Simplifying within the integral context, it separates as:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} du + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} dx \][/tex]
4. Solving Each Integral:
- First integral: [tex]\(\int_{4}^{8} \frac{1}{\sqrt{u}} \, du\)[/tex]
[tex]\[ \int_{4}^{8} u^{-1/2} \, du = 2 u^{1/2} \Big|_{4}^{8} \][/tex]
Calculating this result:
[tex]\[ = 2\sqrt{8} - 2\sqrt{4} = 4\sqrt{2} - 4 \][/tex]
- Second integral: [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]
For this, set [tex]\(u = x^2 + 4\)[/tex] and then:
[tex]\[ = \int_{4}^{8} u^{-1/2} \cdot \frac{du}{2x} + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}} dx = \log(1 + \sqrt{2}) \][/tex]
5. Combining Results: The results from both solved integrals sum up:
[tex]\[ \int_4^8 \frac{1}{\sqrt{u}} \, du + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}}dx = -4 + log(1 + \sqrt(2)) + 4\sqrt{2} \][/tex]
Thus, the value of the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] is [tex]\[-4 + \log(1 + \sqrt{2}) + 4\sqrt{2}\][/tex].
1. Identify the Form: The integrand [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex] suggests that we may need to use substitution to simplify the expression.
2. Substitution: Consider the substitution [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex]. This transforms parts of the integrand accordingly.
3. Rewriting Integral: When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex]. When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
[tex]\[ \int_{4}^{8} \frac{2x}{\sqrt{u}} \frac{du}{2x} + \int_{4}^{8} \frac{1}{\sqrt{u}} du \][/tex]
Simplifying within the integral context, it separates as:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} du + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} dx \][/tex]
4. Solving Each Integral:
- First integral: [tex]\(\int_{4}^{8} \frac{1}{\sqrt{u}} \, du\)[/tex]
[tex]\[ \int_{4}^{8} u^{-1/2} \, du = 2 u^{1/2} \Big|_{4}^{8} \][/tex]
Calculating this result:
[tex]\[ = 2\sqrt{8} - 2\sqrt{4} = 4\sqrt{2} - 4 \][/tex]
- Second integral: [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]
For this, set [tex]\(u = x^2 + 4\)[/tex] and then:
[tex]\[ = \int_{4}^{8} u^{-1/2} \cdot \frac{du}{2x} + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}} dx = \log(1 + \sqrt{2}) \][/tex]
5. Combining Results: The results from both solved integrals sum up:
[tex]\[ \int_4^8 \frac{1}{\sqrt{u}} \, du + \int_{0}^{2} \frac{1}{\sqrt{x^2+4}}dx = -4 + log(1 + \sqrt(2)) + 4\sqrt{2} \][/tex]
Thus, the value of the definite integral [tex]\(\int_0^2 \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] is [tex]\[-4 + \log(1 + \sqrt{2}) + 4\sqrt{2}\][/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.