Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's work through each part of the question step by step to find the complements of the given sets.
Part (a): Complement of [tex]\( A \)[/tex]
Given:
- The universal set [tex]\( U = \{29, 30, 31, \ldots, 45\} \)[/tex].
- The set [tex]\( A = \{32, 33, 37, 39, 42, 44\} \)[/tex].
To find the complement of [tex]\( A \)[/tex] (denoted as [tex]\( A^c \)[/tex]), we need to include all elements in [tex]\( U \)[/tex] that are not in [tex]\( A \)[/tex].
The elements in [tex]\( U \)[/tex] are: [tex]\( 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 \)[/tex].
Removing the elements of [tex]\( A \)[/tex] from [tex]\( U \)[/tex]:
[tex]\[ A^c = U - A = \{29, 30, 31, 34, 35, 36, 38, 40, 41, 43, 45\} \][/tex]
Part (b): Complement of [tex]\( B \)[/tex]
Given:
- The set [tex]\( B = \{x \in U : x \text{ is a multiple of 4} \}\)[/tex].
Multiples of 4 within the range of [tex]\( U \)[/tex] are: [tex]\( 32, 36, 40, 44 \)[/tex].
To find the complement of [tex]\( B \)[/tex] (denoted as [tex]\( B^c \)[/tex]), we include all elements in [tex]\( U \)[/tex] that are not multiples of 4.
[tex]\[ B^c = U - B = \{29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45\} \][/tex]
Part (c): Complement of [tex]\( C \)[/tex]
Given:
- The set [tex]\( C \)[/tex] includes non-prime numbers in [tex]\( U \)[/tex].
Non-prime numbers within the range of [tex]\( U \)[/tex] are: [tex]\( 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45 \)[/tex].
To find the complement of [tex]\( C \)[/tex] (denoted as [tex]\( C^c \)[/tex]), we include all elements in [tex]\( U \)[/tex] that are prime numbers.
The prime numbers in the range [tex]\( U \)[/tex] are: [tex]\( 29, 31, 37, 41, 43 \)[/tex].
[tex]\[ C^c = U - C = \{29, 31, 37, 41, 43\} \][/tex]
Summary of Complements:
- [tex]\( A^c = \{34, 35, 36, 38, 40, 41, 43, 45, 29, 30, 31\}\)[/tex]
- [tex]\( B^c = \{33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 29, 30, 31\} \)[/tex]
- [tex]\( C^c = \{37, 41, 43, 29, 31\} \)[/tex]
Thus, those are the complements for each of the sets [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex].
Part (a): Complement of [tex]\( A \)[/tex]
Given:
- The universal set [tex]\( U = \{29, 30, 31, \ldots, 45\} \)[/tex].
- The set [tex]\( A = \{32, 33, 37, 39, 42, 44\} \)[/tex].
To find the complement of [tex]\( A \)[/tex] (denoted as [tex]\( A^c \)[/tex]), we need to include all elements in [tex]\( U \)[/tex] that are not in [tex]\( A \)[/tex].
The elements in [tex]\( U \)[/tex] are: [tex]\( 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 \)[/tex].
Removing the elements of [tex]\( A \)[/tex] from [tex]\( U \)[/tex]:
[tex]\[ A^c = U - A = \{29, 30, 31, 34, 35, 36, 38, 40, 41, 43, 45\} \][/tex]
Part (b): Complement of [tex]\( B \)[/tex]
Given:
- The set [tex]\( B = \{x \in U : x \text{ is a multiple of 4} \}\)[/tex].
Multiples of 4 within the range of [tex]\( U \)[/tex] are: [tex]\( 32, 36, 40, 44 \)[/tex].
To find the complement of [tex]\( B \)[/tex] (denoted as [tex]\( B^c \)[/tex]), we include all elements in [tex]\( U \)[/tex] that are not multiples of 4.
[tex]\[ B^c = U - B = \{29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45\} \][/tex]
Part (c): Complement of [tex]\( C \)[/tex]
Given:
- The set [tex]\( C \)[/tex] includes non-prime numbers in [tex]\( U \)[/tex].
Non-prime numbers within the range of [tex]\( U \)[/tex] are: [tex]\( 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45 \)[/tex].
To find the complement of [tex]\( C \)[/tex] (denoted as [tex]\( C^c \)[/tex]), we include all elements in [tex]\( U \)[/tex] that are prime numbers.
The prime numbers in the range [tex]\( U \)[/tex] are: [tex]\( 29, 31, 37, 41, 43 \)[/tex].
[tex]\[ C^c = U - C = \{29, 31, 37, 41, 43\} \][/tex]
Summary of Complements:
- [tex]\( A^c = \{34, 35, 36, 38, 40, 41, 43, 45, 29, 30, 31\}\)[/tex]
- [tex]\( B^c = \{33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 29, 30, 31\} \)[/tex]
- [tex]\( C^c = \{37, 41, 43, 29, 31\} \)[/tex]
Thus, those are the complements for each of the sets [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.