Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's focus on solving question number 47 in detail.
The given problem is a function that represents the cost of a product in Birr as a function of time in days: [tex]\( f(t) = 3t + t^2 \)[/tex]. The task is to find the average rate of change of this function over the interval [tex]\([2, 6]\)[/tex].
### Step-by-Step Solution:
1. Identify the interval for [tex]\( t \)[/tex]: The interval given is from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex].
2. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 2 \)[/tex]:
[tex]\[ f(2) = 3(2) + 2^2 = 6 + 4 = 10 \][/tex]
3. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 6 \)[/tex]:
[tex]\[ f(6) = 3(6) + 6^2 = 18 + 36 = 54 \][/tex]
4. Find the average rate of change: The average rate of change of the function over the interval [tex]\([2, 6]\)[/tex] can be found using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \][/tex]
Here, [tex]\( t_1 = 2 \)[/tex] and [tex]\( t_2 = 6 \)[/tex].
5. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{f(6) - f(2)}{6 - 2} = \frac{54 - 10}{6 - 2} = \frac{44}{4} = 11 \][/tex]
So, the average rate of change of the cost function over the interval [tex]\([2, 6]\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Answer:
Therefore, the correct answer to this question is C. 11.
The given problem is a function that represents the cost of a product in Birr as a function of time in days: [tex]\( f(t) = 3t + t^2 \)[/tex]. The task is to find the average rate of change of this function over the interval [tex]\([2, 6]\)[/tex].
### Step-by-Step Solution:
1. Identify the interval for [tex]\( t \)[/tex]: The interval given is from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex].
2. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 2 \)[/tex]:
[tex]\[ f(2) = 3(2) + 2^2 = 6 + 4 = 10 \][/tex]
3. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 6 \)[/tex]:
[tex]\[ f(6) = 3(6) + 6^2 = 18 + 36 = 54 \][/tex]
4. Find the average rate of change: The average rate of change of the function over the interval [tex]\([2, 6]\)[/tex] can be found using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \][/tex]
Here, [tex]\( t_1 = 2 \)[/tex] and [tex]\( t_2 = 6 \)[/tex].
5. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{f(6) - f(2)}{6 - 2} = \frac{54 - 10}{6 - 2} = \frac{44}{4} = 11 \][/tex]
So, the average rate of change of the cost function over the interval [tex]\([2, 6]\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Answer:
Therefore, the correct answer to this question is C. 11.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.