At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's focus on solving question number 47 in detail.
The given problem is a function that represents the cost of a product in Birr as a function of time in days: [tex]\( f(t) = 3t + t^2 \)[/tex]. The task is to find the average rate of change of this function over the interval [tex]\([2, 6]\)[/tex].
### Step-by-Step Solution:
1. Identify the interval for [tex]\( t \)[/tex]: The interval given is from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex].
2. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 2 \)[/tex]:
[tex]\[ f(2) = 3(2) + 2^2 = 6 + 4 = 10 \][/tex]
3. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 6 \)[/tex]:
[tex]\[ f(6) = 3(6) + 6^2 = 18 + 36 = 54 \][/tex]
4. Find the average rate of change: The average rate of change of the function over the interval [tex]\([2, 6]\)[/tex] can be found using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \][/tex]
Here, [tex]\( t_1 = 2 \)[/tex] and [tex]\( t_2 = 6 \)[/tex].
5. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{f(6) - f(2)}{6 - 2} = \frac{54 - 10}{6 - 2} = \frac{44}{4} = 11 \][/tex]
So, the average rate of change of the cost function over the interval [tex]\([2, 6]\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Answer:
Therefore, the correct answer to this question is C. 11.
The given problem is a function that represents the cost of a product in Birr as a function of time in days: [tex]\( f(t) = 3t + t^2 \)[/tex]. The task is to find the average rate of change of this function over the interval [tex]\([2, 6]\)[/tex].
### Step-by-Step Solution:
1. Identify the interval for [tex]\( t \)[/tex]: The interval given is from [tex]\( t = 2 \)[/tex] to [tex]\( t = 6 \)[/tex].
2. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 2 \)[/tex]:
[tex]\[ f(2) = 3(2) + 2^2 = 6 + 4 = 10 \][/tex]
3. Calculate [tex]\( f(t) \)[/tex] for [tex]\( t = 6 \)[/tex]:
[tex]\[ f(6) = 3(6) + 6^2 = 18 + 36 = 54 \][/tex]
4. Find the average rate of change: The average rate of change of the function over the interval [tex]\([2, 6]\)[/tex] can be found using the formula:
[tex]\[ \text{Average rate of change} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \][/tex]
Here, [tex]\( t_1 = 2 \)[/tex] and [tex]\( t_2 = 6 \)[/tex].
5. Substitute the values into the formula:
[tex]\[ \text{Average rate of change} = \frac{f(6) - f(2)}{6 - 2} = \frac{54 - 10}{6 - 2} = \frac{44}{4} = 11 \][/tex]
So, the average rate of change of the cost function over the interval [tex]\([2, 6]\)[/tex] is [tex]\(\boxed{11}\)[/tex].
### Answer:
Therefore, the correct answer to this question is C. 11.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.