Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's start by analyzing the given expression [tex]\( 4^7 \div 4^9 \)[/tex].
### Step 1: Simplify the Expression Using Properties of Exponents
We can use the property of exponents that states [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]. Here, [tex]\( a = 4 \)[/tex], [tex]\( m = 7 \)[/tex], and [tex]\( n = 9 \)[/tex].
So,
[tex]\[ 4^7 \div 4^9 = \frac{4^7}{4^9} \][/tex]
Applying the exponent rule:
[tex]\[ \frac{4^7}{4^9} = 4^{7-9} \][/tex]
Simplify the exponent:
[tex]\[ 7 - 9 = -2 \][/tex]
Thus,
[tex]\[ \frac{4^7}{4^9} = 4^{-2} \][/tex]
### Step 2: Interpret the Negative Exponent
By definition, a negative exponent represents the reciprocal of the base raised to the positive version of the exponent. In this case:
[tex]\[ 4^{-2} = \frac{1}{4^2} \][/tex]
Let's break this down to show the steps explicitly:
1. The negative exponent [tex]\(-2\)[/tex] indicates that we need to take the reciprocal of [tex]\(4^2\)[/tex].
2. Calculate [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 4 \times 4 = 16 \][/tex]
3. Now, take the reciprocal:
[tex]\[ \frac{1}{4^2} = \frac{1}{16} \][/tex]
### Step 3: Final Verification
Now, let's verify that our interpretation holds true for the values:
First, calculate [tex]\(4^{-2} \)[/tex]:
[tex]\[ 4^{-2} = \frac{1}{4^2} \][/tex]
We already know that:
[tex]\[ 4^2 = 16 \][/tex]
So,
[tex]\[ \frac{1}{4^2} = \frac{1}{16} \][/tex]
Therefore, the value of [tex]\( 4^{-2} \)[/tex] is indeed:
[tex]\[ 4^{-2} = \frac{1}{16} \][/tex]
### Conclusion
Hence, we have shown that:
[tex]\[ 4^7 \div 4^9 = 4^{-2} \][/tex]
and that
[tex]\[ 4^{-2} = \frac{1}{4^2} \][/tex]
Everything checks out mathematically. This illustrates the property of negative exponents and their relationship to reciprocals effectively.
### Step 1: Simplify the Expression Using Properties of Exponents
We can use the property of exponents that states [tex]\( \frac{a^m}{a^n} = a^{m-n} \)[/tex]. Here, [tex]\( a = 4 \)[/tex], [tex]\( m = 7 \)[/tex], and [tex]\( n = 9 \)[/tex].
So,
[tex]\[ 4^7 \div 4^9 = \frac{4^7}{4^9} \][/tex]
Applying the exponent rule:
[tex]\[ \frac{4^7}{4^9} = 4^{7-9} \][/tex]
Simplify the exponent:
[tex]\[ 7 - 9 = -2 \][/tex]
Thus,
[tex]\[ \frac{4^7}{4^9} = 4^{-2} \][/tex]
### Step 2: Interpret the Negative Exponent
By definition, a negative exponent represents the reciprocal of the base raised to the positive version of the exponent. In this case:
[tex]\[ 4^{-2} = \frac{1}{4^2} \][/tex]
Let's break this down to show the steps explicitly:
1. The negative exponent [tex]\(-2\)[/tex] indicates that we need to take the reciprocal of [tex]\(4^2\)[/tex].
2. Calculate [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 4 \times 4 = 16 \][/tex]
3. Now, take the reciprocal:
[tex]\[ \frac{1}{4^2} = \frac{1}{16} \][/tex]
### Step 3: Final Verification
Now, let's verify that our interpretation holds true for the values:
First, calculate [tex]\(4^{-2} \)[/tex]:
[tex]\[ 4^{-2} = \frac{1}{4^2} \][/tex]
We already know that:
[tex]\[ 4^2 = 16 \][/tex]
So,
[tex]\[ \frac{1}{4^2} = \frac{1}{16} \][/tex]
Therefore, the value of [tex]\( 4^{-2} \)[/tex] is indeed:
[tex]\[ 4^{-2} = \frac{1}{16} \][/tex]
### Conclusion
Hence, we have shown that:
[tex]\[ 4^7 \div 4^9 = 4^{-2} \][/tex]
and that
[tex]\[ 4^{-2} = \frac{1}{4^2} \][/tex]
Everything checks out mathematically. This illustrates the property of negative exponents and their relationship to reciprocals effectively.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.