Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve for [tex]\(\tan \theta\)[/tex] given that [tex]\(\sec \theta + \tan \theta = 2\)[/tex], we'll use trigonometric identities and algebraic manipulation.
1. Let [tex]\(\sec \theta = x\)[/tex]. Then, it follows that:
[tex]\[ x + \tan \theta = 2 \][/tex]
Solving for [tex]\(\tan \theta\)[/tex], we get:
[tex]\[ \tan \theta = 2 - x \][/tex]
2. Recall the trigonometric identity:
[tex]\[ \sec^2 \theta - \tan^2 \theta = 1 \][/tex]
Substituting [tex]\(\sec \theta = x\)[/tex] and [tex]\(\tan \theta = 2 - x\)[/tex], we have:
[tex]\[ x^2 - (2 - x)^2 = 1 \][/tex]
3. Expanding and simplifying the expression:
[tex]\[ x^2 - (4 - 4x + x^2) = 1 \][/tex]
[tex]\[ x^2 - 4 + 4x - x^2 = 1 \][/tex]
[tex]\[ 4x - 4 = 1 \][/tex]
4. Solving for [tex]\(x\)[/tex]:
[tex]\[ 4x - 4 = 1 \][/tex]
[tex]\[ 4x = 5 \][/tex]
[tex]\[ x = \frac{5}{4} \][/tex]
5. Substitute [tex]\(x\)[/tex] back into [tex]\(\tan \theta = 2 - x\)[/tex]:
[tex]\[ \tan \theta = 2 - \frac{5}{4} = \frac{8}{4} - \frac{5}{4} = \frac{3}{4} \][/tex]
Therefore, the value of [tex]\(\tan \theta\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
1. Let [tex]\(\sec \theta = x\)[/tex]. Then, it follows that:
[tex]\[ x + \tan \theta = 2 \][/tex]
Solving for [tex]\(\tan \theta\)[/tex], we get:
[tex]\[ \tan \theta = 2 - x \][/tex]
2. Recall the trigonometric identity:
[tex]\[ \sec^2 \theta - \tan^2 \theta = 1 \][/tex]
Substituting [tex]\(\sec \theta = x\)[/tex] and [tex]\(\tan \theta = 2 - x\)[/tex], we have:
[tex]\[ x^2 - (2 - x)^2 = 1 \][/tex]
3. Expanding and simplifying the expression:
[tex]\[ x^2 - (4 - 4x + x^2) = 1 \][/tex]
[tex]\[ x^2 - 4 + 4x - x^2 = 1 \][/tex]
[tex]\[ 4x - 4 = 1 \][/tex]
4. Solving for [tex]\(x\)[/tex]:
[tex]\[ 4x - 4 = 1 \][/tex]
[tex]\[ 4x = 5 \][/tex]
[tex]\[ x = \frac{5}{4} \][/tex]
5. Substitute [tex]\(x\)[/tex] back into [tex]\(\tan \theta = 2 - x\)[/tex]:
[tex]\[ \tan \theta = 2 - \frac{5}{4} = \frac{8}{4} - \frac{5}{4} = \frac{3}{4} \][/tex]
Therefore, the value of [tex]\(\tan \theta\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.