Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the range of possible values of [tex]\( k \)[/tex] such that the equation [tex]\( k x^2 + 6k x + 5 = 0 \)[/tex] has no real roots, let's follow these steps:
1. Understand the condition for no real roots:
For a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] to have no real roots, its discriminant must be less than zero. The discriminant [tex]\( \Delta \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
2. Identify coefficients in the given quadratic equation:
The given equation is [tex]\( k x^2 + 6k x + 5 = 0 \)[/tex]. Here, the coefficients are:
[tex]\[ a = k, \quad b = 6k, \quad c = 5 \][/tex]
3. Compute the discriminant:
Substitute [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = (6k)^2 - 4(k)(5) \][/tex]
[tex]\[ \Delta = 36k^2 - 20k \][/tex]
4. Set up the inequality for no real roots:
For the quadratic equation to have no real roots, the discriminant must be less than zero:
[tex]\[ 36k^2 - 20k < 0 \][/tex]
5. Solve the inequality:
Factorize the quadratic expression:
[tex]\[ 36k^2 - 20k = 4k(9k - 5) \][/tex]
Hence, the inequality becomes:
[tex]\[ 4k(9k - 5) < 0 \][/tex]
Since [tex]\( k \)[/tex] is a non-zero constant and must be positive:
[tex]\[ 4k(9k - 5) < 0 \][/tex]
Analyze the factor [tex]\( 4k \)[/tex]:
- [tex]\( 4k \)[/tex] is always positive if [tex]\( k > 0 \)[/tex].
Analyze the factor [tex]\( (9k - 5) \)[/tex]:
- [tex]\( (9k - 5) < 0 \)[/tex] when [tex]\( 9k < 5 \)[/tex].
Therefore, the inequality [tex]\( 4k(9k - 5) < 0 \)[/tex] holds true when:
[tex]\[ 9k - 5 < 0 \implies k < \frac{5}{9} \][/tex]
6. Conclusion:
Combine the conditions found above. Since [tex]\( k \)[/tex] is a non-zero, positive constant:
[tex]\[ 0 < k < \frac{5}{9} \][/tex]
Thus, the range of possible values of [tex]\( k \)[/tex] such that the equation [tex]\( k x^2 + 6k x + 5 = 0 \)[/tex] has no real roots is:
[tex]\[ 0 < k < \frac{5}{9} \][/tex]
1. Understand the condition for no real roots:
For a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] to have no real roots, its discriminant must be less than zero. The discriminant [tex]\( \Delta \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
2. Identify coefficients in the given quadratic equation:
The given equation is [tex]\( k x^2 + 6k x + 5 = 0 \)[/tex]. Here, the coefficients are:
[tex]\[ a = k, \quad b = 6k, \quad c = 5 \][/tex]
3. Compute the discriminant:
Substitute [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = (6k)^2 - 4(k)(5) \][/tex]
[tex]\[ \Delta = 36k^2 - 20k \][/tex]
4. Set up the inequality for no real roots:
For the quadratic equation to have no real roots, the discriminant must be less than zero:
[tex]\[ 36k^2 - 20k < 0 \][/tex]
5. Solve the inequality:
Factorize the quadratic expression:
[tex]\[ 36k^2 - 20k = 4k(9k - 5) \][/tex]
Hence, the inequality becomes:
[tex]\[ 4k(9k - 5) < 0 \][/tex]
Since [tex]\( k \)[/tex] is a non-zero constant and must be positive:
[tex]\[ 4k(9k - 5) < 0 \][/tex]
Analyze the factor [tex]\( 4k \)[/tex]:
- [tex]\( 4k \)[/tex] is always positive if [tex]\( k > 0 \)[/tex].
Analyze the factor [tex]\( (9k - 5) \)[/tex]:
- [tex]\( (9k - 5) < 0 \)[/tex] when [tex]\( 9k < 5 \)[/tex].
Therefore, the inequality [tex]\( 4k(9k - 5) < 0 \)[/tex] holds true when:
[tex]\[ 9k - 5 < 0 \implies k < \frac{5}{9} \][/tex]
6. Conclusion:
Combine the conditions found above. Since [tex]\( k \)[/tex] is a non-zero, positive constant:
[tex]\[ 0 < k < \frac{5}{9} \][/tex]
Thus, the range of possible values of [tex]\( k \)[/tex] such that the equation [tex]\( k x^2 + 6k x + 5 = 0 \)[/tex] has no real roots is:
[tex]\[ 0 < k < \frac{5}{9} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.