Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's go through the process step-by-step to find the integral of the given function:
[tex]\[ \int \frac{4 x^5 + 3}{2 x^2} \, dx \][/tex]
1. Simplify the integrand:
We start with the function inside the integral:
[tex]\[ \frac{4 x^5 + 3}{2 x^2} \][/tex]
We can simplify this by dividing each term in the numerator by the term in the denominator:
[tex]\[ \frac{4 x^5}{2 x^2} + \frac{3}{2 x^2} \][/tex]
Simplifying each term individually:
[tex]\[ \frac{4 x^5}{2 x^2} = 2 x^3 \][/tex]
[tex]\[ \frac{3}{2 x^2} = \frac{3}{2} x^{-2} \][/tex]
So the simplified integrand becomes:
[tex]\[ 2 x^3 + \frac{3}{2} x^{-2} \][/tex]
2. Integrate the simplified expression:
Now, we integrate [tex]\( 2 x^3 + \frac{3}{2} x^{-2} \)[/tex]:
[tex]\[ \int (2 x^3 + \frac{3}{2} x^{-2}) \, dx \][/tex]
We can split this into two separate integrals:
[tex]\[ \int 2 x^3 \, dx + \int \frac{3}{2} x^{-2} \, dx \][/tex]
For the first integral:
[tex]\[ \int 2 x^3 \, dx \][/tex]
Use the power rule ([tex]\( \int x^n \, dx = \frac{x^{n+1}}{n+1} \)[/tex]):
[tex]\[ \int 2 x^3 \, dx = 2 \cdot \frac{x^{3+1}}{3+1} = 2 \cdot \frac{x^4}{4} = \frac{x^4}{2} \][/tex]
For the second integral:
[tex]\[ \int \frac{3}{2} x^{-2} \, dx \][/tex]
Again, use the power rule:
[tex]\[ \int \frac{3}{2} x^{-2} \, dx = \frac{3}{2} \cdot \frac{x^{-2+1}}{-2+1} = \frac{3}{2} \cdot \frac{x^{-1}}{-1} = \frac{3}{2} \cdot (-x^{-1}) = -\frac{3}{2} x^{-1} \][/tex]
Which simplifies to:
[tex]\[ -\frac{3}{2} \frac{1}{x} = -\frac{3}{2x} \][/tex]
3. Combine the results:
Putting it all together, we have:
[tex]\[ \int \frac{4 x^5 + 3}{2 x^2} \, dx = \frac{x^4}{2} - \frac{3}{2x} + C \][/tex]
Where [tex]\( C \)[/tex] is the constant of integration.
So, the final answer in simplest form is:
[tex]\[ \boxed{\frac{x^4}{2} - \frac{3}{2x} + C} \][/tex]
[tex]\[ \int \frac{4 x^5 + 3}{2 x^2} \, dx \][/tex]
1. Simplify the integrand:
We start with the function inside the integral:
[tex]\[ \frac{4 x^5 + 3}{2 x^2} \][/tex]
We can simplify this by dividing each term in the numerator by the term in the denominator:
[tex]\[ \frac{4 x^5}{2 x^2} + \frac{3}{2 x^2} \][/tex]
Simplifying each term individually:
[tex]\[ \frac{4 x^5}{2 x^2} = 2 x^3 \][/tex]
[tex]\[ \frac{3}{2 x^2} = \frac{3}{2} x^{-2} \][/tex]
So the simplified integrand becomes:
[tex]\[ 2 x^3 + \frac{3}{2} x^{-2} \][/tex]
2. Integrate the simplified expression:
Now, we integrate [tex]\( 2 x^3 + \frac{3}{2} x^{-2} \)[/tex]:
[tex]\[ \int (2 x^3 + \frac{3}{2} x^{-2}) \, dx \][/tex]
We can split this into two separate integrals:
[tex]\[ \int 2 x^3 \, dx + \int \frac{3}{2} x^{-2} \, dx \][/tex]
For the first integral:
[tex]\[ \int 2 x^3 \, dx \][/tex]
Use the power rule ([tex]\( \int x^n \, dx = \frac{x^{n+1}}{n+1} \)[/tex]):
[tex]\[ \int 2 x^3 \, dx = 2 \cdot \frac{x^{3+1}}{3+1} = 2 \cdot \frac{x^4}{4} = \frac{x^4}{2} \][/tex]
For the second integral:
[tex]\[ \int \frac{3}{2} x^{-2} \, dx \][/tex]
Again, use the power rule:
[tex]\[ \int \frac{3}{2} x^{-2} \, dx = \frac{3}{2} \cdot \frac{x^{-2+1}}{-2+1} = \frac{3}{2} \cdot \frac{x^{-1}}{-1} = \frac{3}{2} \cdot (-x^{-1}) = -\frac{3}{2} x^{-1} \][/tex]
Which simplifies to:
[tex]\[ -\frac{3}{2} \frac{1}{x} = -\frac{3}{2x} \][/tex]
3. Combine the results:
Putting it all together, we have:
[tex]\[ \int \frac{4 x^5 + 3}{2 x^2} \, dx = \frac{x^4}{2} - \frac{3}{2x} + C \][/tex]
Where [tex]\( C \)[/tex] is the constant of integration.
So, the final answer in simplest form is:
[tex]\[ \boxed{\frac{x^4}{2} - \frac{3}{2x} + C} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.