Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the sum of vectors [tex]\(u\)[/tex] and [tex]\(v\)[/tex] and express it in terms of magnitude and direction, we will follow these steps:
1. Decompose Each Vector into Components:
- Vector [tex]\(u\)[/tex] has a magnitude of 2 and an angle of 95 degrees.
- [tex]\(u_x = 2 \cos 95^\circ \)[/tex]
- [tex]\(u_y = 2 \sin 95^\circ \)[/tex]
- Vector [tex]\(v\)[/tex] has a magnitude of 4 and an angle of 165 degrees.
- [tex]\(v_x = 4 \cos 165^\circ \)[/tex]
- [tex]\(v_y = 4 \sin 165^\circ \)[/tex]
2. Compute the Components of Each Vector:
The components (x and y) for these vectors are:
[tex]\[ u_x = 2 \cos 95^\circ \\ u_y = 2 \sin 95^\circ \\ v_x = 4 \cos 165^\circ \\ v_y = 4 \sin 165^\circ \][/tex]
3. Sum the Corresponding Components:
Add the x-components and y-components separately:
[tex]\[ \text{resultant}_x = u_x + v_x \\ \text{resultant}_y = u_y + v_y \\ \][/tex]
4. Calculate the Magnitude of the Resultant Vector:
Use the Pythagorean theorem to find the magnitude [tex]\( R \)[/tex]:
[tex]\[ R = \sqrt{\text{resultant}_x^2 + \text{resultant}_y^2} \][/tex]
5. Find the Angle of the Resultant Vector:
Use the arctangent function to find the angle [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{\text{resultant}_y}{\text{resultant}_x}\right) \][/tex]
Make sure the angle is in the correct quadrant based on the signs of [tex]\(\text{resultant}_x\)[/tex] and [tex]\(\text{resultant}_y\)[/tex], and convert from radians to degrees if necessary.
6. Normalize the Angle:
Ensure that [tex]\(0^\circ \leq \theta < 360^\circ\)[/tex].
After performing these calculations, we find:
- The magnitude of the resultant vector [tex]\( R \)[/tex] is approximately [tex]\(5.0\)[/tex], rounded to the nearest tenth.
- The direction of the resultant vector [tex]\( \theta \)[/tex] is approximately [tex]\(143^\circ\)[/tex], rounded to the nearest degree.
Therefore, the sum [tex]\( u + v \)[/tex] expressed in magnitude and direction form is:
[tex]\[ \boxed{5.0 \text{ units, direction } 143^\circ} \][/tex]
1. Decompose Each Vector into Components:
- Vector [tex]\(u\)[/tex] has a magnitude of 2 and an angle of 95 degrees.
- [tex]\(u_x = 2 \cos 95^\circ \)[/tex]
- [tex]\(u_y = 2 \sin 95^\circ \)[/tex]
- Vector [tex]\(v\)[/tex] has a magnitude of 4 and an angle of 165 degrees.
- [tex]\(v_x = 4 \cos 165^\circ \)[/tex]
- [tex]\(v_y = 4 \sin 165^\circ \)[/tex]
2. Compute the Components of Each Vector:
The components (x and y) for these vectors are:
[tex]\[ u_x = 2 \cos 95^\circ \\ u_y = 2 \sin 95^\circ \\ v_x = 4 \cos 165^\circ \\ v_y = 4 \sin 165^\circ \][/tex]
3. Sum the Corresponding Components:
Add the x-components and y-components separately:
[tex]\[ \text{resultant}_x = u_x + v_x \\ \text{resultant}_y = u_y + v_y \\ \][/tex]
4. Calculate the Magnitude of the Resultant Vector:
Use the Pythagorean theorem to find the magnitude [tex]\( R \)[/tex]:
[tex]\[ R = \sqrt{\text{resultant}_x^2 + \text{resultant}_y^2} \][/tex]
5. Find the Angle of the Resultant Vector:
Use the arctangent function to find the angle [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{\text{resultant}_y}{\text{resultant}_x}\right) \][/tex]
Make sure the angle is in the correct quadrant based on the signs of [tex]\(\text{resultant}_x\)[/tex] and [tex]\(\text{resultant}_y\)[/tex], and convert from radians to degrees if necessary.
6. Normalize the Angle:
Ensure that [tex]\(0^\circ \leq \theta < 360^\circ\)[/tex].
After performing these calculations, we find:
- The magnitude of the resultant vector [tex]\( R \)[/tex] is approximately [tex]\(5.0\)[/tex], rounded to the nearest tenth.
- The direction of the resultant vector [tex]\( \theta \)[/tex] is approximately [tex]\(143^\circ\)[/tex], rounded to the nearest degree.
Therefore, the sum [tex]\( u + v \)[/tex] expressed in magnitude and direction form is:
[tex]\[ \boxed{5.0 \text{ units, direction } 143^\circ} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.