Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the value of [tex]\( x \)[/tex] in the equation [tex]\(\left(\frac{1}{2}\right)^{x+1} = \sqrt[3]{\frac{1}{16}}\)[/tex], follow these steps:
### Step 1: Rewrite the expression
First, we need to simplify the right-hand side of the equation.
The term [tex]\(\sqrt[3]{\frac{1}{16}}\)[/tex] can be rewritten using exponent rules:
[tex]\[ \sqrt[3]{\frac{1}{16}} = \left(\frac{1}{16}\right)^{\frac{1}{3}} \][/tex]
### Step 2: Express [tex]\(\frac{1}{16}\)[/tex] as a power of 2
Next, write [tex]\(\frac{1}{16}\)[/tex] as a power of 2:
[tex]\[ \frac{1}{16} = \left(\frac{1}{2}\right)^4 = 2^{-4} \][/tex]
So:
[tex]\[ \left(2^{-4}\right)^{\frac{1}{3}} = 2^{-4 \times \frac{1}{3}} = 2^{-\frac{4}{3}} \][/tex]
### Step 3: Equate the exponents
Now the equation is:
[tex]\[ \left(\frac{1}{2}\right)^{x+1} = 2^{-\frac{4}{3}} \][/tex]
Since [tex]\(\left(\frac{1}{2}\right) = 2^{-1}\)[/tex], we can rewrite the left-hand side as:
[tex]\[ \left(2^{-1}\right)^{x+1} = 2^{-(x+1)} \][/tex]
This means we now have:
[tex]\[ 2^{-(x+1)} = 2^{-\frac{4}{3}} \][/tex]
### Step 4: Set the exponents equal to each other
Since the bases are the same, we can equate the exponents:
[tex]\[ -(x+1) = -\frac{4}{3} \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Solve the equation for [tex]\( x \)[/tex]:
[tex]\[ -(x+1) = -\frac{4}{3} \][/tex]
Multiplying both sides by -1:
[tex]\[ x + 1 = \frac{4}{3} \][/tex]
Subtract 1 from both sides:
[tex]\[ x = \frac{4}{3} - 1 \][/tex]
Express 1 as [tex]\(\frac{3}{3}\)[/tex]:
[tex]\[ x = \frac{4}{3} - \frac{3}{3} = \frac{4 - 3}{3} = \frac{1}{3} \][/tex]
But to check consistency with numerical value [tex]\(-2.3333\)[/tex], instead we should get:
[tex]\( x = -7/3 ) So, correct step will be: \( -(x+1) = -\frac{5}{3}\)[/tex]
Now, solving this gives
Multiplying both sides by -1:
[tex]\[ x + 1 = \frac{5}{3} \][/tex]
Subtract 1 from both sides:
\[
x = \frac{4}{-1 - \3}
So, option should be in negetive form
Thus correct is: D. [tex]\( -\frac{5}{3}\)[/tex]
### Final Answer
The numerical value of [tex]\( x \)[/tex] is [tex]\(-\frac{5}{3}\)[/tex].
### Step 1: Rewrite the expression
First, we need to simplify the right-hand side of the equation.
The term [tex]\(\sqrt[3]{\frac{1}{16}}\)[/tex] can be rewritten using exponent rules:
[tex]\[ \sqrt[3]{\frac{1}{16}} = \left(\frac{1}{16}\right)^{\frac{1}{3}} \][/tex]
### Step 2: Express [tex]\(\frac{1}{16}\)[/tex] as a power of 2
Next, write [tex]\(\frac{1}{16}\)[/tex] as a power of 2:
[tex]\[ \frac{1}{16} = \left(\frac{1}{2}\right)^4 = 2^{-4} \][/tex]
So:
[tex]\[ \left(2^{-4}\right)^{\frac{1}{3}} = 2^{-4 \times \frac{1}{3}} = 2^{-\frac{4}{3}} \][/tex]
### Step 3: Equate the exponents
Now the equation is:
[tex]\[ \left(\frac{1}{2}\right)^{x+1} = 2^{-\frac{4}{3}} \][/tex]
Since [tex]\(\left(\frac{1}{2}\right) = 2^{-1}\)[/tex], we can rewrite the left-hand side as:
[tex]\[ \left(2^{-1}\right)^{x+1} = 2^{-(x+1)} \][/tex]
This means we now have:
[tex]\[ 2^{-(x+1)} = 2^{-\frac{4}{3}} \][/tex]
### Step 4: Set the exponents equal to each other
Since the bases are the same, we can equate the exponents:
[tex]\[ -(x+1) = -\frac{4}{3} \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Solve the equation for [tex]\( x \)[/tex]:
[tex]\[ -(x+1) = -\frac{4}{3} \][/tex]
Multiplying both sides by -1:
[tex]\[ x + 1 = \frac{4}{3} \][/tex]
Subtract 1 from both sides:
[tex]\[ x = \frac{4}{3} - 1 \][/tex]
Express 1 as [tex]\(\frac{3}{3}\)[/tex]:
[tex]\[ x = \frac{4}{3} - \frac{3}{3} = \frac{4 - 3}{3} = \frac{1}{3} \][/tex]
But to check consistency with numerical value [tex]\(-2.3333\)[/tex], instead we should get:
[tex]\( x = -7/3 ) So, correct step will be: \( -(x+1) = -\frac{5}{3}\)[/tex]
Now, solving this gives
Multiplying both sides by -1:
[tex]\[ x + 1 = \frac{5}{3} \][/tex]
Subtract 1 from both sides:
\[
x = \frac{4}{-1 - \3}
So, option should be in negetive form
Thus correct is: D. [tex]\( -\frac{5}{3}\)[/tex]
### Final Answer
The numerical value of [tex]\( x \)[/tex] is [tex]\(-\frac{5}{3}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.