Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's break the problem into parts and solve it step-by-step.
### Part 1: Show that [tex]\(\frac{1}{z} = \frac{\bar{z}}{|z|^2}\)[/tex]
Let [tex]\( z = a + bi \)[/tex] be a complex number where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(i\)[/tex] is the imaginary unit.
1. Complex Conjugate:
The complex conjugate of [tex]\( z \)[/tex], denoted by [tex]\(\bar{z}\)[/tex], is:
[tex]\[ \bar{z} = a - bi \][/tex]
2. Magnitude of z:
The magnitude (or modulus) of [tex]\(z\)[/tex], denoted by [tex]\(|z|\)[/tex], is:
[tex]\[ |z| = \sqrt{a^2 + b^2} \][/tex]
Thus, the square of the magnitude is:
[tex]\[ |z|^2 = a^2 + b^2 \][/tex]
3. Reciprocal of z:
We need to find the reciprocal of [tex]\(z\)[/tex], which is [tex]\(\frac{1}{z}\)[/tex].
Recall the property of complex numbers that [tex]\(\frac{1}{z}\)[/tex] can be expressed using its conjugate and magnitude:
[tex]\[ \frac{1}{z} = \frac{1}{a+bi} \][/tex]
To simplify, multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a - bi}{(a+bi)(a-bi)} = \frac{a - bi}{a^2 + b^2} \][/tex]
Therefore,
[tex]\[ \frac{1}{z} = \frac{a - bi}{a^2 + b^2} = \frac{\bar{z}}{|z|^2} \][/tex]
Thus, we have shown that:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{|z|^2} \][/tex]
### Part 2: Show that [tex]\(\bar{z} = -z\)[/tex] implies [tex]\(z\)[/tex] has only an imaginary part
Given [tex]\(\bar{z} = -z\)[/tex]:
[tex]\[ a - bi = - (a + bi) \][/tex]
Equating real and imaginary parts, we get:
[tex]\[ a = -a \quad \text{and} \quad -bi = -bi \][/tex]
From [tex]\(a = -a\)[/tex], we get [tex]\( a = 0 \)[/tex]. Thus, [tex]\(z\)[/tex] becomes purely imaginary, [tex]\( z = bi \)[/tex].
### Part 3: Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
Given the equation:
[tex]\[ z(2 - i) = (\bar{z} + 1)(1 + i) \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that this equation is satisfied.
First, express [tex]\(z\)[/tex] and [tex]\(\bar{z}\)[/tex]:
[tex]\[ z = a + bi \quad \text{and} \quad \bar{z} = a - bi \][/tex]
Substitute these into the given equation:
[tex]\[ (a + bi)(2 - i) = ((a - bi) + 1)(1 + i) \][/tex]
Expand both sides:
1. Left-hand Side:
[tex]\[ (a + bi)(2 - i) = 2a + 2bi - ai - b i^2 = 2a + 2bi - ai + b = (2a + b) + (2b - a)i \][/tex]
2. Right-hand Side:
[tex]\[ ((a - bi) + 1)(1 + i) = (a - bi + 1)(1 + i) = (a + 1 - bi)(1 + i) \][/tex]
Expand:
[tex]\[ (a + 1 - bi)(1 + i) = (a + 1)(1 + i) - bi(1 + i) \][/tex]
[tex]\[ = (a + 1) + (a + 1)i - bi - b i^2 \][/tex]
[tex]\[ = a + 1 + (a + 1)i - bi + b \][/tex]
[tex]\[ = (a + 1 + b) + (a - b + 1)i \][/tex]
Now equate the real and imaginary parts from both sides:
[tex]\[ 2a + b = a + 1 + b \quad \text{(real part)} \][/tex]
[tex]\[ 2b - a = a - b + 1 \quad \text{(imaginary part)} \][/tex]
From the real part equation:
[tex]\[ 2a + b = a + 1 + b \][/tex]
[tex]\[ 2a = a + 1 \][/tex]
[tex]\[ a = 1 \][/tex]
From the imaginary part equation:
[tex]\[ 2b - a = a - b + 1 \][/tex]
[tex]\[ 2b - 1 = 1 - b + 1 \][/tex]
[tex]\[ 2b - 1 = 2 - b \][/tex]
[tex]\[ 3b = 3 \][/tex]
[tex]\[ b = 1 \][/tex]
Thus, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the given equation are:
[tex]\[ a = 1, \quad b = 1 \][/tex]
Hence [tex]\( z = 1 + i \)[/tex].
### Part 1: Show that [tex]\(\frac{1}{z} = \frac{\bar{z}}{|z|^2}\)[/tex]
Let [tex]\( z = a + bi \)[/tex] be a complex number where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(i\)[/tex] is the imaginary unit.
1. Complex Conjugate:
The complex conjugate of [tex]\( z \)[/tex], denoted by [tex]\(\bar{z}\)[/tex], is:
[tex]\[ \bar{z} = a - bi \][/tex]
2. Magnitude of z:
The magnitude (or modulus) of [tex]\(z\)[/tex], denoted by [tex]\(|z|\)[/tex], is:
[tex]\[ |z| = \sqrt{a^2 + b^2} \][/tex]
Thus, the square of the magnitude is:
[tex]\[ |z|^2 = a^2 + b^2 \][/tex]
3. Reciprocal of z:
We need to find the reciprocal of [tex]\(z\)[/tex], which is [tex]\(\frac{1}{z}\)[/tex].
Recall the property of complex numbers that [tex]\(\frac{1}{z}\)[/tex] can be expressed using its conjugate and magnitude:
[tex]\[ \frac{1}{z} = \frac{1}{a+bi} \][/tex]
To simplify, multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a - bi}{(a+bi)(a-bi)} = \frac{a - bi}{a^2 + b^2} \][/tex]
Therefore,
[tex]\[ \frac{1}{z} = \frac{a - bi}{a^2 + b^2} = \frac{\bar{z}}{|z|^2} \][/tex]
Thus, we have shown that:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{|z|^2} \][/tex]
### Part 2: Show that [tex]\(\bar{z} = -z\)[/tex] implies [tex]\(z\)[/tex] has only an imaginary part
Given [tex]\(\bar{z} = -z\)[/tex]:
[tex]\[ a - bi = - (a + bi) \][/tex]
Equating real and imaginary parts, we get:
[tex]\[ a = -a \quad \text{and} \quad -bi = -bi \][/tex]
From [tex]\(a = -a\)[/tex], we get [tex]\( a = 0 \)[/tex]. Thus, [tex]\(z\)[/tex] becomes purely imaginary, [tex]\( z = bi \)[/tex].
### Part 3: Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
Given the equation:
[tex]\[ z(2 - i) = (\bar{z} + 1)(1 + i) \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that this equation is satisfied.
First, express [tex]\(z\)[/tex] and [tex]\(\bar{z}\)[/tex]:
[tex]\[ z = a + bi \quad \text{and} \quad \bar{z} = a - bi \][/tex]
Substitute these into the given equation:
[tex]\[ (a + bi)(2 - i) = ((a - bi) + 1)(1 + i) \][/tex]
Expand both sides:
1. Left-hand Side:
[tex]\[ (a + bi)(2 - i) = 2a + 2bi - ai - b i^2 = 2a + 2bi - ai + b = (2a + b) + (2b - a)i \][/tex]
2. Right-hand Side:
[tex]\[ ((a - bi) + 1)(1 + i) = (a - bi + 1)(1 + i) = (a + 1 - bi)(1 + i) \][/tex]
Expand:
[tex]\[ (a + 1 - bi)(1 + i) = (a + 1)(1 + i) - bi(1 + i) \][/tex]
[tex]\[ = (a + 1) + (a + 1)i - bi - b i^2 \][/tex]
[tex]\[ = a + 1 + (a + 1)i - bi + b \][/tex]
[tex]\[ = (a + 1 + b) + (a - b + 1)i \][/tex]
Now equate the real and imaginary parts from both sides:
[tex]\[ 2a + b = a + 1 + b \quad \text{(real part)} \][/tex]
[tex]\[ 2b - a = a - b + 1 \quad \text{(imaginary part)} \][/tex]
From the real part equation:
[tex]\[ 2a + b = a + 1 + b \][/tex]
[tex]\[ 2a = a + 1 \][/tex]
[tex]\[ a = 1 \][/tex]
From the imaginary part equation:
[tex]\[ 2b - a = a - b + 1 \][/tex]
[tex]\[ 2b - 1 = 1 - b + 1 \][/tex]
[tex]\[ 2b - 1 = 2 - b \][/tex]
[tex]\[ 3b = 3 \][/tex]
[tex]\[ b = 1 \][/tex]
Thus, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the given equation are:
[tex]\[ a = 1, \quad b = 1 \][/tex]
Hence [tex]\( z = 1 + i \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.