Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's break the problem into parts and solve it step-by-step.
### Part 1: Show that [tex]\(\frac{1}{z} = \frac{\bar{z}}{|z|^2}\)[/tex]
Let [tex]\( z = a + bi \)[/tex] be a complex number where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(i\)[/tex] is the imaginary unit.
1. Complex Conjugate:
The complex conjugate of [tex]\( z \)[/tex], denoted by [tex]\(\bar{z}\)[/tex], is:
[tex]\[ \bar{z} = a - bi \][/tex]
2. Magnitude of z:
The magnitude (or modulus) of [tex]\(z\)[/tex], denoted by [tex]\(|z|\)[/tex], is:
[tex]\[ |z| = \sqrt{a^2 + b^2} \][/tex]
Thus, the square of the magnitude is:
[tex]\[ |z|^2 = a^2 + b^2 \][/tex]
3. Reciprocal of z:
We need to find the reciprocal of [tex]\(z\)[/tex], which is [tex]\(\frac{1}{z}\)[/tex].
Recall the property of complex numbers that [tex]\(\frac{1}{z}\)[/tex] can be expressed using its conjugate and magnitude:
[tex]\[ \frac{1}{z} = \frac{1}{a+bi} \][/tex]
To simplify, multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a - bi}{(a+bi)(a-bi)} = \frac{a - bi}{a^2 + b^2} \][/tex]
Therefore,
[tex]\[ \frac{1}{z} = \frac{a - bi}{a^2 + b^2} = \frac{\bar{z}}{|z|^2} \][/tex]
Thus, we have shown that:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{|z|^2} \][/tex]
### Part 2: Show that [tex]\(\bar{z} = -z\)[/tex] implies [tex]\(z\)[/tex] has only an imaginary part
Given [tex]\(\bar{z} = -z\)[/tex]:
[tex]\[ a - bi = - (a + bi) \][/tex]
Equating real and imaginary parts, we get:
[tex]\[ a = -a \quad \text{and} \quad -bi = -bi \][/tex]
From [tex]\(a = -a\)[/tex], we get [tex]\( a = 0 \)[/tex]. Thus, [tex]\(z\)[/tex] becomes purely imaginary, [tex]\( z = bi \)[/tex].
### Part 3: Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
Given the equation:
[tex]\[ z(2 - i) = (\bar{z} + 1)(1 + i) \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that this equation is satisfied.
First, express [tex]\(z\)[/tex] and [tex]\(\bar{z}\)[/tex]:
[tex]\[ z = a + bi \quad \text{and} \quad \bar{z} = a - bi \][/tex]
Substitute these into the given equation:
[tex]\[ (a + bi)(2 - i) = ((a - bi) + 1)(1 + i) \][/tex]
Expand both sides:
1. Left-hand Side:
[tex]\[ (a + bi)(2 - i) = 2a + 2bi - ai - b i^2 = 2a + 2bi - ai + b = (2a + b) + (2b - a)i \][/tex]
2. Right-hand Side:
[tex]\[ ((a - bi) + 1)(1 + i) = (a - bi + 1)(1 + i) = (a + 1 - bi)(1 + i) \][/tex]
Expand:
[tex]\[ (a + 1 - bi)(1 + i) = (a + 1)(1 + i) - bi(1 + i) \][/tex]
[tex]\[ = (a + 1) + (a + 1)i - bi - b i^2 \][/tex]
[tex]\[ = a + 1 + (a + 1)i - bi + b \][/tex]
[tex]\[ = (a + 1 + b) + (a - b + 1)i \][/tex]
Now equate the real and imaginary parts from both sides:
[tex]\[ 2a + b = a + 1 + b \quad \text{(real part)} \][/tex]
[tex]\[ 2b - a = a - b + 1 \quad \text{(imaginary part)} \][/tex]
From the real part equation:
[tex]\[ 2a + b = a + 1 + b \][/tex]
[tex]\[ 2a = a + 1 \][/tex]
[tex]\[ a = 1 \][/tex]
From the imaginary part equation:
[tex]\[ 2b - a = a - b + 1 \][/tex]
[tex]\[ 2b - 1 = 1 - b + 1 \][/tex]
[tex]\[ 2b - 1 = 2 - b \][/tex]
[tex]\[ 3b = 3 \][/tex]
[tex]\[ b = 1 \][/tex]
Thus, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the given equation are:
[tex]\[ a = 1, \quad b = 1 \][/tex]
Hence [tex]\( z = 1 + i \)[/tex].
### Part 1: Show that [tex]\(\frac{1}{z} = \frac{\bar{z}}{|z|^2}\)[/tex]
Let [tex]\( z = a + bi \)[/tex] be a complex number where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(i\)[/tex] is the imaginary unit.
1. Complex Conjugate:
The complex conjugate of [tex]\( z \)[/tex], denoted by [tex]\(\bar{z}\)[/tex], is:
[tex]\[ \bar{z} = a - bi \][/tex]
2. Magnitude of z:
The magnitude (or modulus) of [tex]\(z\)[/tex], denoted by [tex]\(|z|\)[/tex], is:
[tex]\[ |z| = \sqrt{a^2 + b^2} \][/tex]
Thus, the square of the magnitude is:
[tex]\[ |z|^2 = a^2 + b^2 \][/tex]
3. Reciprocal of z:
We need to find the reciprocal of [tex]\(z\)[/tex], which is [tex]\(\frac{1}{z}\)[/tex].
Recall the property of complex numbers that [tex]\(\frac{1}{z}\)[/tex] can be expressed using its conjugate and magnitude:
[tex]\[ \frac{1}{z} = \frac{1}{a+bi} \][/tex]
To simplify, multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a - bi}{(a+bi)(a-bi)} = \frac{a - bi}{a^2 + b^2} \][/tex]
Therefore,
[tex]\[ \frac{1}{z} = \frac{a - bi}{a^2 + b^2} = \frac{\bar{z}}{|z|^2} \][/tex]
Thus, we have shown that:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{|z|^2} \][/tex]
### Part 2: Show that [tex]\(\bar{z} = -z\)[/tex] implies [tex]\(z\)[/tex] has only an imaginary part
Given [tex]\(\bar{z} = -z\)[/tex]:
[tex]\[ a - bi = - (a + bi) \][/tex]
Equating real and imaginary parts, we get:
[tex]\[ a = -a \quad \text{and} \quad -bi = -bi \][/tex]
From [tex]\(a = -a\)[/tex], we get [tex]\( a = 0 \)[/tex]. Thus, [tex]\(z\)[/tex] becomes purely imaginary, [tex]\( z = bi \)[/tex].
### Part 3: Solve for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]
Given the equation:
[tex]\[ z(2 - i) = (\bar{z} + 1)(1 + i) \][/tex]
We need to find [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that this equation is satisfied.
First, express [tex]\(z\)[/tex] and [tex]\(\bar{z}\)[/tex]:
[tex]\[ z = a + bi \quad \text{and} \quad \bar{z} = a - bi \][/tex]
Substitute these into the given equation:
[tex]\[ (a + bi)(2 - i) = ((a - bi) + 1)(1 + i) \][/tex]
Expand both sides:
1. Left-hand Side:
[tex]\[ (a + bi)(2 - i) = 2a + 2bi - ai - b i^2 = 2a + 2bi - ai + b = (2a + b) + (2b - a)i \][/tex]
2. Right-hand Side:
[tex]\[ ((a - bi) + 1)(1 + i) = (a - bi + 1)(1 + i) = (a + 1 - bi)(1 + i) \][/tex]
Expand:
[tex]\[ (a + 1 - bi)(1 + i) = (a + 1)(1 + i) - bi(1 + i) \][/tex]
[tex]\[ = (a + 1) + (a + 1)i - bi - b i^2 \][/tex]
[tex]\[ = a + 1 + (a + 1)i - bi + b \][/tex]
[tex]\[ = (a + 1 + b) + (a - b + 1)i \][/tex]
Now equate the real and imaginary parts from both sides:
[tex]\[ 2a + b = a + 1 + b \quad \text{(real part)} \][/tex]
[tex]\[ 2b - a = a - b + 1 \quad \text{(imaginary part)} \][/tex]
From the real part equation:
[tex]\[ 2a + b = a + 1 + b \][/tex]
[tex]\[ 2a = a + 1 \][/tex]
[tex]\[ a = 1 \][/tex]
From the imaginary part equation:
[tex]\[ 2b - a = a - b + 1 \][/tex]
[tex]\[ 2b - 1 = 1 - b + 1 \][/tex]
[tex]\[ 2b - 1 = 2 - b \][/tex]
[tex]\[ 3b = 3 \][/tex]
[tex]\[ b = 1 \][/tex]
Thus, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the given equation are:
[tex]\[ a = 1, \quad b = 1 \][/tex]
Hence [tex]\( z = 1 + i \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.