Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the angle subtended at the center of the hoop by the circular wire, follow these steps:
1. Calculate the circumference of the wire:
Given the radius of the wire is 8 cm, the circumference, [tex]\(C_{\text{wire}}\)[/tex], can be calculated using the formula:
[tex]\[ C = 2 \pi r \][/tex]
Using [tex]\(\pi = \frac{22}{7}\)[/tex], we get:
[tex]\[ C_{\text{wire}} = 2 \times \frac{22}{7} \times 8 = 50.285714285714285 \, \text{cm} \][/tex]
2. Calculate the circumference of the hoop:
Given the radius of the hoop is 128 cm, the circumference, [tex]\(C_{\text{hoop}}\)[/tex], can be calculated similarly:
[tex]\[ C_{\text{hoop}} = 2 \times \frac{22}{7} \times 128 = 804.5714285714286 \, \text{cm} \][/tex]
3. Determine the angle subtended by the wire at the center of the hoop:
The wire now lies along the circumference of the hoop. The angle subtended, [tex]\(\theta\)[/tex], at the center of the hoop can be found using the ratio of the wire's arc length to the hoop's total circumference:
[tex]\[ \theta = \left(\frac{C_{\text{wire}}}{C_{\text{hoop}}}\right) \times 360^\circ \][/tex]
Substituting the values:
[tex]\[ \theta = \left(\frac{50.285714285714285}{804.5714285714286}\right) \times 360 = 22.5^\circ \][/tex]
Hence, the angle subtended at the center of the hoop by the circular wire, when bent to lie along the circumference of the hoop, is [tex]\(22.5^\circ\)[/tex].
1. Calculate the circumference of the wire:
Given the radius of the wire is 8 cm, the circumference, [tex]\(C_{\text{wire}}\)[/tex], can be calculated using the formula:
[tex]\[ C = 2 \pi r \][/tex]
Using [tex]\(\pi = \frac{22}{7}\)[/tex], we get:
[tex]\[ C_{\text{wire}} = 2 \times \frac{22}{7} \times 8 = 50.285714285714285 \, \text{cm} \][/tex]
2. Calculate the circumference of the hoop:
Given the radius of the hoop is 128 cm, the circumference, [tex]\(C_{\text{hoop}}\)[/tex], can be calculated similarly:
[tex]\[ C_{\text{hoop}} = 2 \times \frac{22}{7} \times 128 = 804.5714285714286 \, \text{cm} \][/tex]
3. Determine the angle subtended by the wire at the center of the hoop:
The wire now lies along the circumference of the hoop. The angle subtended, [tex]\(\theta\)[/tex], at the center of the hoop can be found using the ratio of the wire's arc length to the hoop's total circumference:
[tex]\[ \theta = \left(\frac{C_{\text{wire}}}{C_{\text{hoop}}}\right) \times 360^\circ \][/tex]
Substituting the values:
[tex]\[ \theta = \left(\frac{50.285714285714285}{804.5714285714286}\right) \times 360 = 22.5^\circ \][/tex]
Hence, the angle subtended at the center of the hoop by the circular wire, when bent to lie along the circumference of the hoop, is [tex]\(22.5^\circ\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.