Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] on a coordinate plane, we use the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Given the points [tex]\((2, 1)\)[/tex] and [tex]\((14, 6)\)[/tex], let's identify the coordinates:
- [tex]\((x_1, y_1) = (2, 1)\)[/tex]
- [tex]\((x_2, y_2) = (14, 6)\)[/tex]
Now, apply the coordinates to the distance formula:
1. Compute the difference in the x-coordinates:
[tex]\[ x_2 - x_1 = 14 - 2 = 12 \][/tex]
2. Compute the difference in the y-coordinates:
[tex]\[ y_2 - y_1 = 6 - 1 = 5 \][/tex]
3. Square these differences:
[tex]\[ (12)^2 = 144 \][/tex]
[tex]\[ (5)^2 = 25 \][/tex]
4. Add the squared differences:
[tex]\[ 144 + 25 = 169 \][/tex]
5. Take the square root of the sum:
[tex]\[ \sqrt{169} = 13 \][/tex]
Therefore, the distance between the points [tex]\((2, 1)\)[/tex] and [tex]\((14, 6)\)[/tex] is [tex]\(\boxed{13}\)[/tex] units.
So, the correct answer is:
A. 13 units
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Given the points [tex]\((2, 1)\)[/tex] and [tex]\((14, 6)\)[/tex], let's identify the coordinates:
- [tex]\((x_1, y_1) = (2, 1)\)[/tex]
- [tex]\((x_2, y_2) = (14, 6)\)[/tex]
Now, apply the coordinates to the distance formula:
1. Compute the difference in the x-coordinates:
[tex]\[ x_2 - x_1 = 14 - 2 = 12 \][/tex]
2. Compute the difference in the y-coordinates:
[tex]\[ y_2 - y_1 = 6 - 1 = 5 \][/tex]
3. Square these differences:
[tex]\[ (12)^2 = 144 \][/tex]
[tex]\[ (5)^2 = 25 \][/tex]
4. Add the squared differences:
[tex]\[ 144 + 25 = 169 \][/tex]
5. Take the square root of the sum:
[tex]\[ \sqrt{169} = 13 \][/tex]
Therefore, the distance between the points [tex]\((2, 1)\)[/tex] and [tex]\((14, 6)\)[/tex] is [tex]\(\boxed{13}\)[/tex] units.
So, the correct answer is:
A. 13 units
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.