Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the expected value of a customer's winnings in this prize game, we'll utilize the concept of expected value from probability theory. The expected value is the sum of all possible outcomes, each multiplied by their respective probabilities. Here is a step-by-step breakdown of the calculation:
1. Identify the outcomes and their probabilities:
- Winning \[tex]$400 has a probability of 0.01. - Winning \$[/tex]40 has a probability of 0.05.
- Winning \[tex]$15 has a probability of 0.20. - The remaining probability needs to be accounted for. Since the total probability must sum to 1, the probability of not winning any prize (i.e., winning \$[/tex]0) can be calculated as follows:
[tex]\[ P(\$0) = 1 - (0.01 + 0.05 + 0.20) = 1 - 0.26 = 0.74 \][/tex]
2. Multiply each outcome by its probability:
- For \[tex]$400: \[ 400 \times 0.01 = 4.00 \] - For \$[/tex]40:
[tex]\[ 40 \times 0.05 = 2.00 \][/tex]
- For \[tex]$15: \[ 15 \times 0.20 = 3.00 \] - For \$[/tex]0:
[tex]\[ 0 \times 0.74 = 0.00 \][/tex]
3. Sum these products to find the expected value:
[tex]\[ 4.00 + 2.00 + 3.00 + 0.00 = 9.00 \][/tex]
Therefore, the expected value of a customer's winnings in this game is \[tex]$9.00. Thus, the correct answer is: \[ \boxed{\$[/tex]9.00}
\]
1. Identify the outcomes and their probabilities:
- Winning \[tex]$400 has a probability of 0.01. - Winning \$[/tex]40 has a probability of 0.05.
- Winning \[tex]$15 has a probability of 0.20. - The remaining probability needs to be accounted for. Since the total probability must sum to 1, the probability of not winning any prize (i.e., winning \$[/tex]0) can be calculated as follows:
[tex]\[ P(\$0) = 1 - (0.01 + 0.05 + 0.20) = 1 - 0.26 = 0.74 \][/tex]
2. Multiply each outcome by its probability:
- For \[tex]$400: \[ 400 \times 0.01 = 4.00 \] - For \$[/tex]40:
[tex]\[ 40 \times 0.05 = 2.00 \][/tex]
- For \[tex]$15: \[ 15 \times 0.20 = 3.00 \] - For \$[/tex]0:
[tex]\[ 0 \times 0.74 = 0.00 \][/tex]
3. Sum these products to find the expected value:
[tex]\[ 4.00 + 2.00 + 3.00 + 0.00 = 9.00 \][/tex]
Therefore, the expected value of a customer's winnings in this game is \[tex]$9.00. Thus, the correct answer is: \[ \boxed{\$[/tex]9.00}
\]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.