At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To graph the quadratic function [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex], we will follow these steps:
1. Identify the Vertex:
The function is in vertex form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex. By comparing [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex] with the general form:
- We can see that [tex]\( h = -4 \)[/tex] and [tex]\( k = -3 \)[/tex].
Therefore, the vertex of the parabola is at [tex]\( (-4, -3) \)[/tex].
2. Choose a Second Point:
To graph the parabola accurately, we need another point on the graph. Let's choose [tex]\( x = -3 \)[/tex] as our second [tex]\( x \)[/tex]-value.
- Plugging [tex]\( x = -3 \)[/tex] into the function to find the corresponding [tex]\( y \)[/tex]-value:
[tex]\[ f(-3) = -2(-3 + 4)^2 - 3 = -2(1)^2 - 3 = -2 - 3 = -5 \][/tex]
Thus, the second point on the parabola is [tex]\( (-3, -5) \)[/tex].
3. Plot the Points and Draw the Parabola:
- Start by plotting the vertex at [tex]\( (-4, -3) \)[/tex].
- Next, plot the second point at [tex]\( (-3, -5) \)[/tex].
- Draw a smooth curve through these points, making sure it opens downwards (since the coefficient of the squared term, [tex]\(-2\)[/tex], is negative), forming a parabola.
By plotting these points, you can accurately graph the quadratic function [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex].
1. Identify the Vertex:
The function is in vertex form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], where [tex]\( (h, k) \)[/tex] is the vertex. By comparing [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex] with the general form:
- We can see that [tex]\( h = -4 \)[/tex] and [tex]\( k = -3 \)[/tex].
Therefore, the vertex of the parabola is at [tex]\( (-4, -3) \)[/tex].
2. Choose a Second Point:
To graph the parabola accurately, we need another point on the graph. Let's choose [tex]\( x = -3 \)[/tex] as our second [tex]\( x \)[/tex]-value.
- Plugging [tex]\( x = -3 \)[/tex] into the function to find the corresponding [tex]\( y \)[/tex]-value:
[tex]\[ f(-3) = -2(-3 + 4)^2 - 3 = -2(1)^2 - 3 = -2 - 3 = -5 \][/tex]
Thus, the second point on the parabola is [tex]\( (-3, -5) \)[/tex].
3. Plot the Points and Draw the Parabola:
- Start by plotting the vertex at [tex]\( (-4, -3) \)[/tex].
- Next, plot the second point at [tex]\( (-3, -5) \)[/tex].
- Draw a smooth curve through these points, making sure it opens downwards (since the coefficient of the squared term, [tex]\(-2\)[/tex], is negative), forming a parabola.
By plotting these points, you can accurately graph the quadratic function [tex]\( f(x) = -2(x+4)^2 - 3 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.