At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex].
First, identify the integrand: [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex].
To solve this integral, we can use techniques such as substitution and recognizing standard forms of integrals. Here is a detailed step-by-step solution:
1. Recognize that the expression under the square root [tex]\(x^2 + 4\)[/tex] suggests using a trigonometric or hyperbolic substitution. However, we can also consider a more straightforward method by splitting the integrand.
2. Split the integrand:
[tex]\[ \int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx = \int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx \][/tex]
3. Solve the first part [tex]\(\int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
The integral now becomes:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} \, du = \int_{4}^{8} u^{-\frac{1}{2}} \, du \][/tex]
Evaluate the integral:
[tex]\[ \int u^{-\frac{1}{2}} \, du = 2u^{\frac{1}{2}} \][/tex]
So we have:
[tex]\[ 2u^{\frac{1}{2}} \Big|_4^8 = 2\left(8^{\frac{1}{2}} - 4^{\frac{1}{2}}\right) = 2(\sqrt{8} - \sqrt{4}) = 2(2\sqrt{2} - 2) = 4\sqrt{2} - 4 \][/tex]
4. Solve the second part [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(x = 2 \tan \theta\)[/tex]. Then, [tex]\(dx = 2 \sec^2 \theta \, d\theta\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(\theta = 0\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(\theta = \frac{\pi}{4}\)[/tex].
The integral now becomes:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{4 \tan^2 \theta + 4}} \cdot 2 \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta}{2 \sec \theta} \, d\theta = \int_{0}^{\frac{\pi}{4}} \sec \theta \, d\theta \][/tex]
Evaluate the integral:
[tex]\[ \int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| \][/tex]
So we have:
[tex]\[ \ln|\sec \theta + \tan \theta| \Big|_0^{\frac{\pi}{4}} = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)| = \ln|\sqrt{2} + 1| - \ln|1| = \ln(\sqrt{2} + 1) - 0 = \ln(\sqrt{2} + 1) \][/tex]
Combining both parts, the total value of the integral is:
[tex]\[ 4\sqrt{2} - 4 + \ln(\sqrt{2} + 1) \approx 2.53822783651192 \][/tex]
So, the evaluated integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] equals [tex]\(\boxed{2.53822783651192}\)[/tex].
First, identify the integrand: [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex].
To solve this integral, we can use techniques such as substitution and recognizing standard forms of integrals. Here is a detailed step-by-step solution:
1. Recognize that the expression under the square root [tex]\(x^2 + 4\)[/tex] suggests using a trigonometric or hyperbolic substitution. However, we can also consider a more straightforward method by splitting the integrand.
2. Split the integrand:
[tex]\[ \int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx = \int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx \][/tex]
3. Solve the first part [tex]\(\int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
The integral now becomes:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} \, du = \int_{4}^{8} u^{-\frac{1}{2}} \, du \][/tex]
Evaluate the integral:
[tex]\[ \int u^{-\frac{1}{2}} \, du = 2u^{\frac{1}{2}} \][/tex]
So we have:
[tex]\[ 2u^{\frac{1}{2}} \Big|_4^8 = 2\left(8^{\frac{1}{2}} - 4^{\frac{1}{2}}\right) = 2(\sqrt{8} - \sqrt{4}) = 2(2\sqrt{2} - 2) = 4\sqrt{2} - 4 \][/tex]
4. Solve the second part [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(x = 2 \tan \theta\)[/tex]. Then, [tex]\(dx = 2 \sec^2 \theta \, d\theta\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(\theta = 0\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(\theta = \frac{\pi}{4}\)[/tex].
The integral now becomes:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{4 \tan^2 \theta + 4}} \cdot 2 \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta}{2 \sec \theta} \, d\theta = \int_{0}^{\frac{\pi}{4}} \sec \theta \, d\theta \][/tex]
Evaluate the integral:
[tex]\[ \int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| \][/tex]
So we have:
[tex]\[ \ln|\sec \theta + \tan \theta| \Big|_0^{\frac{\pi}{4}} = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)| = \ln|\sqrt{2} + 1| - \ln|1| = \ln(\sqrt{2} + 1) - 0 = \ln(\sqrt{2} + 1) \][/tex]
Combining both parts, the total value of the integral is:
[tex]\[ 4\sqrt{2} - 4 + \ln(\sqrt{2} + 1) \approx 2.53822783651192 \][/tex]
So, the evaluated integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] equals [tex]\(\boxed{2.53822783651192}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.