Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's solve the integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex].
First, identify the integrand: [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex].
To solve this integral, we can use techniques such as substitution and recognizing standard forms of integrals. Here is a detailed step-by-step solution:
1. Recognize that the expression under the square root [tex]\(x^2 + 4\)[/tex] suggests using a trigonometric or hyperbolic substitution. However, we can also consider a more straightforward method by splitting the integrand.
2. Split the integrand:
[tex]\[ \int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx = \int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx \][/tex]
3. Solve the first part [tex]\(\int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
The integral now becomes:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} \, du = \int_{4}^{8} u^{-\frac{1}{2}} \, du \][/tex]
Evaluate the integral:
[tex]\[ \int u^{-\frac{1}{2}} \, du = 2u^{\frac{1}{2}} \][/tex]
So we have:
[tex]\[ 2u^{\frac{1}{2}} \Big|_4^8 = 2\left(8^{\frac{1}{2}} - 4^{\frac{1}{2}}\right) = 2(\sqrt{8} - \sqrt{4}) = 2(2\sqrt{2} - 2) = 4\sqrt{2} - 4 \][/tex]
4. Solve the second part [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(x = 2 \tan \theta\)[/tex]. Then, [tex]\(dx = 2 \sec^2 \theta \, d\theta\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(\theta = 0\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(\theta = \frac{\pi}{4}\)[/tex].
The integral now becomes:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{4 \tan^2 \theta + 4}} \cdot 2 \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta}{2 \sec \theta} \, d\theta = \int_{0}^{\frac{\pi}{4}} \sec \theta \, d\theta \][/tex]
Evaluate the integral:
[tex]\[ \int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| \][/tex]
So we have:
[tex]\[ \ln|\sec \theta + \tan \theta| \Big|_0^{\frac{\pi}{4}} = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)| = \ln|\sqrt{2} + 1| - \ln|1| = \ln(\sqrt{2} + 1) - 0 = \ln(\sqrt{2} + 1) \][/tex]
Combining both parts, the total value of the integral is:
[tex]\[ 4\sqrt{2} - 4 + \ln(\sqrt{2} + 1) \approx 2.53822783651192 \][/tex]
So, the evaluated integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] equals [tex]\(\boxed{2.53822783651192}\)[/tex].
First, identify the integrand: [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex].
To solve this integral, we can use techniques such as substitution and recognizing standard forms of integrals. Here is a detailed step-by-step solution:
1. Recognize that the expression under the square root [tex]\(x^2 + 4\)[/tex] suggests using a trigonometric or hyperbolic substitution. However, we can also consider a more straightforward method by splitting the integrand.
2. Split the integrand:
[tex]\[ \int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx = \int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx \][/tex]
3. Solve the first part [tex]\(\int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].
The integral now becomes:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} \, du = \int_{4}^{8} u^{-\frac{1}{2}} \, du \][/tex]
Evaluate the integral:
[tex]\[ \int u^{-\frac{1}{2}} \, du = 2u^{\frac{1}{2}} \][/tex]
So we have:
[tex]\[ 2u^{\frac{1}{2}} \Big|_4^8 = 2\left(8^{\frac{1}{2}} - 4^{\frac{1}{2}}\right) = 2(\sqrt{8} - \sqrt{4}) = 2(2\sqrt{2} - 2) = 4\sqrt{2} - 4 \][/tex]
4. Solve the second part [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(x = 2 \tan \theta\)[/tex]. Then, [tex]\(dx = 2 \sec^2 \theta \, d\theta\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(\theta = 0\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(\theta = \frac{\pi}{4}\)[/tex].
The integral now becomes:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{4 \tan^2 \theta + 4}} \cdot 2 \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta}{2 \sec \theta} \, d\theta = \int_{0}^{\frac{\pi}{4}} \sec \theta \, d\theta \][/tex]
Evaluate the integral:
[tex]\[ \int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| \][/tex]
So we have:
[tex]\[ \ln|\sec \theta + \tan \theta| \Big|_0^{\frac{\pi}{4}} = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)| = \ln|\sqrt{2} + 1| - \ln|1| = \ln(\sqrt{2} + 1) - 0 = \ln(\sqrt{2} + 1) \][/tex]
Combining both parts, the total value of the integral is:
[tex]\[ 4\sqrt{2} - 4 + \ln(\sqrt{2} + 1) \approx 2.53822783651192 \][/tex]
So, the evaluated integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] equals [tex]\(\boxed{2.53822783651192}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.