Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Evaluate the integral:

[tex]\[ \int_0^2 \frac{2x+1}{\sqrt{x^2+4}} \, dx \][/tex]


Sagot :

Certainly! Let's solve the integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex].

First, identify the integrand: [tex]\(\frac{2x + 1}{\sqrt{x^2 + 4}}\)[/tex].

To solve this integral, we can use techniques such as substitution and recognizing standard forms of integrals. Here is a detailed step-by-step solution:

1. Recognize that the expression under the square root [tex]\(x^2 + 4\)[/tex] suggests using a trigonometric or hyperbolic substitution. However, we can also consider a more straightforward method by splitting the integrand.

2. Split the integrand:
[tex]\[ \int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx = \int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx + \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx \][/tex]

3. Solve the first part [tex]\(\int_{0}^{2} \frac{2x}{\sqrt{x^2 + 4}} \, dx\)[/tex]:
Let [tex]\(u = x^2 + 4\)[/tex]. Then, [tex]\(du = 2x \, dx\)[/tex].
When [tex]\(x = 0\)[/tex], [tex]\(u = 4\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(u = 8\)[/tex].

The integral now becomes:
[tex]\[ \int_{4}^{8} \frac{1}{\sqrt{u}} \, du = \int_{4}^{8} u^{-\frac{1}{2}} \, du \][/tex]
Evaluate the integral:
[tex]\[ \int u^{-\frac{1}{2}} \, du = 2u^{\frac{1}{2}} \][/tex]
So we have:
[tex]\[ 2u^{\frac{1}{2}} \Big|_4^8 = 2\left(8^{\frac{1}{2}} - 4^{\frac{1}{2}}\right) = 2(\sqrt{8} - \sqrt{4}) = 2(2\sqrt{2} - 2) = 4\sqrt{2} - 4 \][/tex]

4. Solve the second part [tex]\(\int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx\)[/tex]:

Let [tex]\(x = 2 \tan \theta\)[/tex]. Then, [tex]\(dx = 2 \sec^2 \theta \, d\theta\)[/tex].

When [tex]\(x = 0\)[/tex], [tex]\(\theta = 0\)[/tex].
When [tex]\(x = 2\)[/tex], [tex]\(\theta = \frac{\pi}{4}\)[/tex].

The integral now becomes:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{4 \tan^2 \theta + 4}} \cdot 2 \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{4}} \frac{2 \sec^2 \theta}{2 \sec \theta} \, d\theta = \int_{0}^{\frac{\pi}{4}} \sec \theta \, d\theta \][/tex]
Evaluate the integral:
[tex]\[ \int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| \][/tex]
So we have:
[tex]\[ \ln|\sec \theta + \tan \theta| \Big|_0^{\frac{\pi}{4}} = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)| = \ln|\sqrt{2} + 1| - \ln|1| = \ln(\sqrt{2} + 1) - 0 = \ln(\sqrt{2} + 1) \][/tex]

Combining both parts, the total value of the integral is:
[tex]\[ 4\sqrt{2} - 4 + \ln(\sqrt{2} + 1) \approx 2.53822783651192 \][/tex]

So, the evaluated integral [tex]\(\int_{0}^{2} \frac{2x + 1}{\sqrt{x^2 + 4}} \, dx\)[/tex] equals [tex]\(\boxed{2.53822783651192}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.