Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Given two complex numbers, [tex] z_1 = -i [/tex] and [tex] z_2 = 2 + i \sqrt{3} [/tex].

(a) Express [tex] z_1^2 [/tex] and [tex] \overline{z_2} [/tex] in the form [tex] a + b i [/tex] where [tex] a, b \in \mathbb{R} [/tex].

(b) From (a), find [tex] w = \frac{z_1^2 + \overline{z_2}}{z_1} [/tex]. Hence, find [tex] |w| [/tex] and [tex] \arg(w) [/tex].

Sagot :

Given two complex numbers, [tex]\( z_1 = -i \)[/tex] and [tex]\( z_2 = 2 + i \sqrt{3} \)[/tex].

### Part (a)
First, we will express [tex]\( z_1^2 \)[/tex] and [tex]\( \overline{z_2} \)[/tex] in the form [tex]\( a + bi \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are real numbers.

#### 1. Calculate [tex]\( z_1^2 \)[/tex]:
[tex]\[ z_1 = -i \][/tex]
[tex]\[ z_1^2 = (-i)^2 \][/tex]

Knowing that [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ z_1^2 = (-i)^2 = (-i)(-i) = i^2 = -1 \][/tex]

Therefore, in the form [tex]\( a + bi \)[/tex], we have:
[tex]\[ z_1^2 = -1 + 0i \][/tex]
Thus, [tex]\( a = -1 \)[/tex] and [tex]\( b = 0 \)[/tex].

#### 2. Calculate the conjugate of [tex]\( z_2 \)[/tex]:
[tex]\[ z_2 = 2 + i \sqrt{3} \][/tex]
The conjugate of [tex]\( z_2 \)[/tex] is obtained by changing the sign of the imaginary part:
[tex]\[ \overline{z_2} = 2 - i \sqrt{3} \][/tex]

Expressing this in the form [tex]\( a + bi \)[/tex]:
[tex]\[ \overline{z_2} = 2 + (-\sqrt{3})i \][/tex]
Thus, [tex]\( a = 2 \)[/tex] and [tex]\( b = -\sqrt{3} \)[/tex].

So, for part (a), we have:
- [tex]\( z_1^2 \)[/tex] in the form [tex]\( a + bi \)[/tex] is [tex]\( -1 + 0i \)[/tex].
- [tex]\( \overline{z_2} \)[/tex] in the form [tex]\( a + bi \)[/tex] is [tex]\( 2 - \sqrt{3}i \)[/tex].

### Part (b)
Using the results from part (a), we need to find [tex]\( w \)[/tex] given by:
[tex]\[ w = \frac{z_1^2 + \overline{z_2}}{z_1} \][/tex]

Substitute [tex]\( z_1^2 \)[/tex] and [tex]\( \overline{z_2} \)[/tex] into the equation:
[tex]\[ w = \frac{(-1 + 0i) + (2 - \sqrt{3}i)}{-i} \][/tex]

First, combine the numerator:
[tex]\[ z_1^2 + \overline{z_2} = (-1 + 0i) + (2 - \sqrt{3}i) = 1 - \sqrt{3}i \][/tex]

Next, divide by [tex]\( z_1 \)[/tex]:
[tex]\[ w = \frac{1 - \sqrt{3}i}{-i} \][/tex]

To simplify this, we multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ w = \frac{(1 - \sqrt{3}i)(i)}{-i(i)} \][/tex]
[tex]\[ w = \frac{i - i^2 \sqrt{3}}{-i^2} \][/tex]
[tex]\[ w = \frac{i - (-1) \sqrt{3}}{1} \][/tex]

Since [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ w = i + \sqrt{3} \][/tex]

Express [tex]\( w \)[/tex] as:
[tex]\[ w = \sqrt{3} + i \][/tex]

#### Calculate the magnitude [tex]\( |w| \)[/tex]:
The magnitude of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ |w| = \sqrt{a^2 + b^2} \][/tex]
For [tex]\( w = \sqrt{3} + i \)[/tex]:
[tex]\[ |w| = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \][/tex]

#### Calculate the argument [tex]\( \arg(w) \)[/tex]:
The argument of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{b}{a} \right) \][/tex]
For [tex]\( w = \sqrt{3} + i \)[/tex]:
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) \][/tex]
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6} \text{ radians} \][/tex]

In conclusion:
- [tex]\( w = \sqrt{3} + i \)[/tex]
- The magnitude [tex]\( |w| = 2 \)[/tex]
- The argument [tex]\( \arg(w) = \frac{\pi}{6} \)[/tex] radians