Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given two complex numbers, [tex]\( z_1 = -i \)[/tex] and [tex]\( z_2 = 2 + i \sqrt{3} \)[/tex].
### Part (a)
First, we will express [tex]\( z_1^2 \)[/tex] and [tex]\( \overline{z_2} \)[/tex] in the form [tex]\( a + bi \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are real numbers.
#### 1. Calculate [tex]\( z_1^2 \)[/tex]:
[tex]\[ z_1 = -i \][/tex]
[tex]\[ z_1^2 = (-i)^2 \][/tex]
Knowing that [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ z_1^2 = (-i)^2 = (-i)(-i) = i^2 = -1 \][/tex]
Therefore, in the form [tex]\( a + bi \)[/tex], we have:
[tex]\[ z_1^2 = -1 + 0i \][/tex]
Thus, [tex]\( a = -1 \)[/tex] and [tex]\( b = 0 \)[/tex].
#### 2. Calculate the conjugate of [tex]\( z_2 \)[/tex]:
[tex]\[ z_2 = 2 + i \sqrt{3} \][/tex]
The conjugate of [tex]\( z_2 \)[/tex] is obtained by changing the sign of the imaginary part:
[tex]\[ \overline{z_2} = 2 - i \sqrt{3} \][/tex]
Expressing this in the form [tex]\( a + bi \)[/tex]:
[tex]\[ \overline{z_2} = 2 + (-\sqrt{3})i \][/tex]
Thus, [tex]\( a = 2 \)[/tex] and [tex]\( b = -\sqrt{3} \)[/tex].
So, for part (a), we have:
- [tex]\( z_1^2 \)[/tex] in the form [tex]\( a + bi \)[/tex] is [tex]\( -1 + 0i \)[/tex].
- [tex]\( \overline{z_2} \)[/tex] in the form [tex]\( a + bi \)[/tex] is [tex]\( 2 - \sqrt{3}i \)[/tex].
### Part (b)
Using the results from part (a), we need to find [tex]\( w \)[/tex] given by:
[tex]\[ w = \frac{z_1^2 + \overline{z_2}}{z_1} \][/tex]
Substitute [tex]\( z_1^2 \)[/tex] and [tex]\( \overline{z_2} \)[/tex] into the equation:
[tex]\[ w = \frac{(-1 + 0i) + (2 - \sqrt{3}i)}{-i} \][/tex]
First, combine the numerator:
[tex]\[ z_1^2 + \overline{z_2} = (-1 + 0i) + (2 - \sqrt{3}i) = 1 - \sqrt{3}i \][/tex]
Next, divide by [tex]\( z_1 \)[/tex]:
[tex]\[ w = \frac{1 - \sqrt{3}i}{-i} \][/tex]
To simplify this, we multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ w = \frac{(1 - \sqrt{3}i)(i)}{-i(i)} \][/tex]
[tex]\[ w = \frac{i - i^2 \sqrt{3}}{-i^2} \][/tex]
[tex]\[ w = \frac{i - (-1) \sqrt{3}}{1} \][/tex]
Since [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ w = i + \sqrt{3} \][/tex]
Express [tex]\( w \)[/tex] as:
[tex]\[ w = \sqrt{3} + i \][/tex]
#### Calculate the magnitude [tex]\( |w| \)[/tex]:
The magnitude of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ |w| = \sqrt{a^2 + b^2} \][/tex]
For [tex]\( w = \sqrt{3} + i \)[/tex]:
[tex]\[ |w| = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \][/tex]
#### Calculate the argument [tex]\( \arg(w) \)[/tex]:
The argument of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{b}{a} \right) \][/tex]
For [tex]\( w = \sqrt{3} + i \)[/tex]:
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) \][/tex]
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6} \text{ radians} \][/tex]
In conclusion:
- [tex]\( w = \sqrt{3} + i \)[/tex]
- The magnitude [tex]\( |w| = 2 \)[/tex]
- The argument [tex]\( \arg(w) = \frac{\pi}{6} \)[/tex] radians
### Part (a)
First, we will express [tex]\( z_1^2 \)[/tex] and [tex]\( \overline{z_2} \)[/tex] in the form [tex]\( a + bi \)[/tex], where [tex]\( a \)[/tex] and [tex]\( b \)[/tex] are real numbers.
#### 1. Calculate [tex]\( z_1^2 \)[/tex]:
[tex]\[ z_1 = -i \][/tex]
[tex]\[ z_1^2 = (-i)^2 \][/tex]
Knowing that [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ z_1^2 = (-i)^2 = (-i)(-i) = i^2 = -1 \][/tex]
Therefore, in the form [tex]\( a + bi \)[/tex], we have:
[tex]\[ z_1^2 = -1 + 0i \][/tex]
Thus, [tex]\( a = -1 \)[/tex] and [tex]\( b = 0 \)[/tex].
#### 2. Calculate the conjugate of [tex]\( z_2 \)[/tex]:
[tex]\[ z_2 = 2 + i \sqrt{3} \][/tex]
The conjugate of [tex]\( z_2 \)[/tex] is obtained by changing the sign of the imaginary part:
[tex]\[ \overline{z_2} = 2 - i \sqrt{3} \][/tex]
Expressing this in the form [tex]\( a + bi \)[/tex]:
[tex]\[ \overline{z_2} = 2 + (-\sqrt{3})i \][/tex]
Thus, [tex]\( a = 2 \)[/tex] and [tex]\( b = -\sqrt{3} \)[/tex].
So, for part (a), we have:
- [tex]\( z_1^2 \)[/tex] in the form [tex]\( a + bi \)[/tex] is [tex]\( -1 + 0i \)[/tex].
- [tex]\( \overline{z_2} \)[/tex] in the form [tex]\( a + bi \)[/tex] is [tex]\( 2 - \sqrt{3}i \)[/tex].
### Part (b)
Using the results from part (a), we need to find [tex]\( w \)[/tex] given by:
[tex]\[ w = \frac{z_1^2 + \overline{z_2}}{z_1} \][/tex]
Substitute [tex]\( z_1^2 \)[/tex] and [tex]\( \overline{z_2} \)[/tex] into the equation:
[tex]\[ w = \frac{(-1 + 0i) + (2 - \sqrt{3}i)}{-i} \][/tex]
First, combine the numerator:
[tex]\[ z_1^2 + \overline{z_2} = (-1 + 0i) + (2 - \sqrt{3}i) = 1 - \sqrt{3}i \][/tex]
Next, divide by [tex]\( z_1 \)[/tex]:
[tex]\[ w = \frac{1 - \sqrt{3}i}{-i} \][/tex]
To simplify this, we multiply the numerator and the denominator by the conjugate of the denominator:
[tex]\[ w = \frac{(1 - \sqrt{3}i)(i)}{-i(i)} \][/tex]
[tex]\[ w = \frac{i - i^2 \sqrt{3}}{-i^2} \][/tex]
[tex]\[ w = \frac{i - (-1) \sqrt{3}}{1} \][/tex]
Since [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ w = i + \sqrt{3} \][/tex]
Express [tex]\( w \)[/tex] as:
[tex]\[ w = \sqrt{3} + i \][/tex]
#### Calculate the magnitude [tex]\( |w| \)[/tex]:
The magnitude of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ |w| = \sqrt{a^2 + b^2} \][/tex]
For [tex]\( w = \sqrt{3} + i \)[/tex]:
[tex]\[ |w| = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \][/tex]
#### Calculate the argument [tex]\( \arg(w) \)[/tex]:
The argument of a complex number [tex]\( a + bi \)[/tex] is given by:
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{b}{a} \right) \][/tex]
For [tex]\( w = \sqrt{3} + i \)[/tex]:
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) \][/tex]
[tex]\[ \arg(w) = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6} \text{ radians} \][/tex]
In conclusion:
- [tex]\( w = \sqrt{3} + i \)[/tex]
- The magnitude [tex]\( |w| = 2 \)[/tex]
- The argument [tex]\( \arg(w) = \frac{\pi}{6} \)[/tex] radians
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.