Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

∆PQR has vertices at P(2, 4), Q(3, 8) and R(5, 4). A dilation and series of translations map ∆PQR to ∆ABC, whose vertices are A(2, 4), B(5.5, 18), and C(12.5, 4). What is the scale factor of the dilation in the similarity transformation?

Sagot :

Answer:

  3.5

Step-by-step explanation:

You want the scale factor in the dilation that maps P(2, 5), Q(3, 8), R(5, 4) to A(2, 4), B(5.5, 18), C(12.5, 4).

Scale factor

We can determine the scale factor by looking at the lengths of PQ and AB. The first step in determining the length will be to form the differences Q-P and B-A. Since there are no rotations involved, we only need to look at the differences of the x-coordinates.

  Qx -Px = 3 -2 = 1

  Bx -Ax = 5.5 -2 = 3.5

The scale factor of the dilation is ...

  [tex]s=\dfrac{B_x-A_x}{Q_x-P_x}=\dfrac{3.5}{1}=3.5[/tex]

The scale factor of the dilation is 3.5.

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.