Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To understand how the graph of [tex]\( y = -\sqrt[3]{x-4} \)[/tex] is transformed to produce the graph of [tex]\( y = -\sqrt[3]{2x} - 4 \)[/tex], we need to analyze the transformations step-by-step.
Let's start with the given function:
### Original Function:
[tex]\[ y = -\sqrt[3]{x-4} \][/tex]
### Target Function:
[tex]\[ y = -\sqrt[3]{2 x} - 4 \][/tex]
### Step 1: Horizontal Compression
The term [tex]\( 2x \)[/tex] inside the cubic root indicates a horizontal compression. In general, [tex]\( y = f(ax) \)[/tex] represents a horizontal compression by a factor of [tex]\( \frac{1}{a} \)[/tex]. For our case, [tex]\( a = 2 \)[/tex], so the graph is compressed horizontally by a factor of [tex]\( \frac{1}{2} \)[/tex] or simply 2.
### Step 2: Vertical Shift
The term [tex]\( -4 \)[/tex] outside the cubic root indicates a vertical shift downward. In general, [tex]\( y = f(x) + c \)[/tex] shifts the graph of [tex]\( f \)[/tex] vertically by [tex]\( c \)[/tex] units. Since [tex]\( c \)[/tex] here is [tex]\( -4 \)[/tex], the graph is shifted downward by 4 units.
Putting these transformations together:
1. Horizontal Compression by a factor of 2:
- The original graph [tex]\( y = -\sqrt[3]{x-4} \)[/tex] is horizontally compressed by a factor of 2, transforming it to [tex]\( y = -\sqrt[3]{2(x-4)} = -\sqrt[3]{2x-8} \)[/tex].
2. Vertical Shift Downward by 4 units:
- The function [tex]\( y = -\sqrt[3]{2x} \)[/tex] is then moved down by 4 units, resulting in [tex]\( y = -\sqrt[3]{2x} - 4 \)[/tex].
Therefore, the correct transformation description is:
- The graph is compressed horizontally by a factor of 2 and then moved down 4 units.
Hence, the correct answer is:
- The graph is compressed horizontally by a factor of 2 and then moved down 4 units.
Let's start with the given function:
### Original Function:
[tex]\[ y = -\sqrt[3]{x-4} \][/tex]
### Target Function:
[tex]\[ y = -\sqrt[3]{2 x} - 4 \][/tex]
### Step 1: Horizontal Compression
The term [tex]\( 2x \)[/tex] inside the cubic root indicates a horizontal compression. In general, [tex]\( y = f(ax) \)[/tex] represents a horizontal compression by a factor of [tex]\( \frac{1}{a} \)[/tex]. For our case, [tex]\( a = 2 \)[/tex], so the graph is compressed horizontally by a factor of [tex]\( \frac{1}{2} \)[/tex] or simply 2.
### Step 2: Vertical Shift
The term [tex]\( -4 \)[/tex] outside the cubic root indicates a vertical shift downward. In general, [tex]\( y = f(x) + c \)[/tex] shifts the graph of [tex]\( f \)[/tex] vertically by [tex]\( c \)[/tex] units. Since [tex]\( c \)[/tex] here is [tex]\( -4 \)[/tex], the graph is shifted downward by 4 units.
Putting these transformations together:
1. Horizontal Compression by a factor of 2:
- The original graph [tex]\( y = -\sqrt[3]{x-4} \)[/tex] is horizontally compressed by a factor of 2, transforming it to [tex]\( y = -\sqrt[3]{2(x-4)} = -\sqrt[3]{2x-8} \)[/tex].
2. Vertical Shift Downward by 4 units:
- The function [tex]\( y = -\sqrt[3]{2x} \)[/tex] is then moved down by 4 units, resulting in [tex]\( y = -\sqrt[3]{2x} - 4 \)[/tex].
Therefore, the correct transformation description is:
- The graph is compressed horizontally by a factor of 2 and then moved down 4 units.
Hence, the correct answer is:
- The graph is compressed horizontally by a factor of 2 and then moved down 4 units.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.