Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let us start by defining the function [tex]\( y = \sin^{-1}(x) \)[/tex]. To show that the given differential equation holds, we will compute the first and second derivatives of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] and then substitute them into the differential equation.
### Step 1: First Derivative of [tex]\( y \)[/tex]
Given:
[tex]\[ y = \sin^{-1}(x) \][/tex]
We find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left[\sin^{-1}(x)\right] = \frac{1}{\sqrt{1 - x^2}} \][/tex]
### Step 2: Second Derivative of [tex]\( y \)[/tex]
Next, we find the derivative of the first derivative [tex]\(\frac{dy}{dx}\)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
We use the chain rule to differentiate this expression. Let:
[tex]\[ u = 1 - x^2 \][/tex]
Then:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{u}}\right) = \frac{d}{du} \left(u^{-\frac{1}{2}}\right) \cdot \frac{du}{dx} \][/tex]
First compute [tex]\(\frac{d}{du} \left(u^{-\frac{1}{2}}\right)\)[/tex]:
[tex]\[ \frac{d}{du} \left(u^{-\frac{1}{2}}\right) = -\frac{1}{2} u^{-\frac{3}{2}} \][/tex]
Next, compute [tex]\(\frac{du}{dx}\)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(1 - x^2\right) = -2x \][/tex]
Combining these results:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{1}{2}(1 - x^2)^{-\frac{3}{2}} \cdot (-2x) = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
Thus, the second derivative is:
[tex]\[ \frac{d^2 y}{dx^2} = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
### Step 3: Substitute into the Given Expression
Now we substitute [tex]\(\frac{dy}{dx}\)[/tex] and [tex]\(\frac{d^2 y}{dx^2}\)[/tex] into the given differential equation:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Substituting the values, we get:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) - x \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
Simplify each term:
1. For the first term:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) = \frac{x (1 - x^2)}{(1 - x^2)^{\frac{3}{2}}} = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
2. For the second term:
[tex]\[ x \left(\frac{1}{\sqrt{1 - x^2}}\right) = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
We see that both terms are the same:
[tex]\[ \frac{x}{(1 - x^2)^{\frac{1}{2}}} - \frac{x}{(1 - x^2)^{\frac{1}{2}}} = 0 \][/tex]
Thus:
[tex]\[ 0 = 0 \][/tex]
This completes the proof that:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Hence, the given differential equation holds true for [tex]\( y = \sin^{-1}(x) \)[/tex].
### Step 1: First Derivative of [tex]\( y \)[/tex]
Given:
[tex]\[ y = \sin^{-1}(x) \][/tex]
We find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left[\sin^{-1}(x)\right] = \frac{1}{\sqrt{1 - x^2}} \][/tex]
### Step 2: Second Derivative of [tex]\( y \)[/tex]
Next, we find the derivative of the first derivative [tex]\(\frac{dy}{dx}\)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
We use the chain rule to differentiate this expression. Let:
[tex]\[ u = 1 - x^2 \][/tex]
Then:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{u}}\right) = \frac{d}{du} \left(u^{-\frac{1}{2}}\right) \cdot \frac{du}{dx} \][/tex]
First compute [tex]\(\frac{d}{du} \left(u^{-\frac{1}{2}}\right)\)[/tex]:
[tex]\[ \frac{d}{du} \left(u^{-\frac{1}{2}}\right) = -\frac{1}{2} u^{-\frac{3}{2}} \][/tex]
Next, compute [tex]\(\frac{du}{dx}\)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(1 - x^2\right) = -2x \][/tex]
Combining these results:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{1}{2}(1 - x^2)^{-\frac{3}{2}} \cdot (-2x) = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
Thus, the second derivative is:
[tex]\[ \frac{d^2 y}{dx^2} = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
### Step 3: Substitute into the Given Expression
Now we substitute [tex]\(\frac{dy}{dx}\)[/tex] and [tex]\(\frac{d^2 y}{dx^2}\)[/tex] into the given differential equation:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Substituting the values, we get:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) - x \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
Simplify each term:
1. For the first term:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) = \frac{x (1 - x^2)}{(1 - x^2)^{\frac{3}{2}}} = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
2. For the second term:
[tex]\[ x \left(\frac{1}{\sqrt{1 - x^2}}\right) = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
We see that both terms are the same:
[tex]\[ \frac{x}{(1 - x^2)^{\frac{1}{2}}} - \frac{x}{(1 - x^2)^{\frac{1}{2}}} = 0 \][/tex]
Thus:
[tex]\[ 0 = 0 \][/tex]
This completes the proof that:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Hence, the given differential equation holds true for [tex]\( y = \sin^{-1}(x) \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.