Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let us start by defining the function [tex]\( y = \sin^{-1}(x) \)[/tex]. To show that the given differential equation holds, we will compute the first and second derivatives of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] and then substitute them into the differential equation.
### Step 1: First Derivative of [tex]\( y \)[/tex]
Given:
[tex]\[ y = \sin^{-1}(x) \][/tex]
We find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left[\sin^{-1}(x)\right] = \frac{1}{\sqrt{1 - x^2}} \][/tex]
### Step 2: Second Derivative of [tex]\( y \)[/tex]
Next, we find the derivative of the first derivative [tex]\(\frac{dy}{dx}\)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
We use the chain rule to differentiate this expression. Let:
[tex]\[ u = 1 - x^2 \][/tex]
Then:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{u}}\right) = \frac{d}{du} \left(u^{-\frac{1}{2}}\right) \cdot \frac{du}{dx} \][/tex]
First compute [tex]\(\frac{d}{du} \left(u^{-\frac{1}{2}}\right)\)[/tex]:
[tex]\[ \frac{d}{du} \left(u^{-\frac{1}{2}}\right) = -\frac{1}{2} u^{-\frac{3}{2}} \][/tex]
Next, compute [tex]\(\frac{du}{dx}\)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(1 - x^2\right) = -2x \][/tex]
Combining these results:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{1}{2}(1 - x^2)^{-\frac{3}{2}} \cdot (-2x) = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
Thus, the second derivative is:
[tex]\[ \frac{d^2 y}{dx^2} = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
### Step 3: Substitute into the Given Expression
Now we substitute [tex]\(\frac{dy}{dx}\)[/tex] and [tex]\(\frac{d^2 y}{dx^2}\)[/tex] into the given differential equation:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Substituting the values, we get:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) - x \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
Simplify each term:
1. For the first term:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) = \frac{x (1 - x^2)}{(1 - x^2)^{\frac{3}{2}}} = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
2. For the second term:
[tex]\[ x \left(\frac{1}{\sqrt{1 - x^2}}\right) = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
We see that both terms are the same:
[tex]\[ \frac{x}{(1 - x^2)^{\frac{1}{2}}} - \frac{x}{(1 - x^2)^{\frac{1}{2}}} = 0 \][/tex]
Thus:
[tex]\[ 0 = 0 \][/tex]
This completes the proof that:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Hence, the given differential equation holds true for [tex]\( y = \sin^{-1}(x) \)[/tex].
### Step 1: First Derivative of [tex]\( y \)[/tex]
Given:
[tex]\[ y = \sin^{-1}(x) \][/tex]
We find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left[\sin^{-1}(x)\right] = \frac{1}{\sqrt{1 - x^2}} \][/tex]
### Step 2: Second Derivative of [tex]\( y \)[/tex]
Next, we find the derivative of the first derivative [tex]\(\frac{dy}{dx}\)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
We use the chain rule to differentiate this expression. Let:
[tex]\[ u = 1 - x^2 \][/tex]
Then:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{u}}\right) = \frac{d}{du} \left(u^{-\frac{1}{2}}\right) \cdot \frac{du}{dx} \][/tex]
First compute [tex]\(\frac{d}{du} \left(u^{-\frac{1}{2}}\right)\)[/tex]:
[tex]\[ \frac{d}{du} \left(u^{-\frac{1}{2}}\right) = -\frac{1}{2} u^{-\frac{3}{2}} \][/tex]
Next, compute [tex]\(\frac{du}{dx}\)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(1 - x^2\right) = -2x \][/tex]
Combining these results:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{1}{2}(1 - x^2)^{-\frac{3}{2}} \cdot (-2x) = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
Thus, the second derivative is:
[tex]\[ \frac{d^2 y}{dx^2} = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]
### Step 3: Substitute into the Given Expression
Now we substitute [tex]\(\frac{dy}{dx}\)[/tex] and [tex]\(\frac{d^2 y}{dx^2}\)[/tex] into the given differential equation:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Substituting the values, we get:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) - x \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]
Simplify each term:
1. For the first term:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) = \frac{x (1 - x^2)}{(1 - x^2)^{\frac{3}{2}}} = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
2. For the second term:
[tex]\[ x \left(\frac{1}{\sqrt{1 - x^2}}\right) = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]
We see that both terms are the same:
[tex]\[ \frac{x}{(1 - x^2)^{\frac{1}{2}}} - \frac{x}{(1 - x^2)^{\frac{1}{2}}} = 0 \][/tex]
Thus:
[tex]\[ 0 = 0 \][/tex]
This completes the proof that:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]
Hence, the given differential equation holds true for [tex]\( y = \sin^{-1}(x) \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.