Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

If [tex]y = \sin^{-1} x[/tex], then show that
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]


Sagot :

Certainly! Let us start by defining the function [tex]\( y = \sin^{-1}(x) \)[/tex]. To show that the given differential equation holds, we will compute the first and second derivatives of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] and then substitute them into the differential equation.

### Step 1: First Derivative of [tex]\( y \)[/tex]

Given:
[tex]\[ y = \sin^{-1}(x) \][/tex]

We find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{d}{dx} \left[\sin^{-1}(x)\right] = \frac{1}{\sqrt{1 - x^2}} \][/tex]

### Step 2: Second Derivative of [tex]\( y \)[/tex]

Next, we find the derivative of the first derivative [tex]\(\frac{dy}{dx}\)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]

We use the chain rule to differentiate this expression. Let:
[tex]\[ u = 1 - x^2 \][/tex]

Then:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{u}}\right) = \frac{d}{du} \left(u^{-\frac{1}{2}}\right) \cdot \frac{du}{dx} \][/tex]

First compute [tex]\(\frac{d}{du} \left(u^{-\frac{1}{2}}\right)\)[/tex]:
[tex]\[ \frac{d}{du} \left(u^{-\frac{1}{2}}\right) = -\frac{1}{2} u^{-\frac{3}{2}} \][/tex]

Next, compute [tex]\(\frac{du}{dx}\)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} \left(1 - x^2\right) = -2x \][/tex]

Combining these results:
[tex]\[ \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{1}{2}(1 - x^2)^{-\frac{3}{2}} \cdot (-2x) = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]

Thus, the second derivative is:
[tex]\[ \frac{d^2 y}{dx^2} = \frac{x}{(1 - x^2)^{\frac{3}{2}}} \][/tex]

### Step 3: Substitute into the Given Expression

Now we substitute [tex]\(\frac{dy}{dx}\)[/tex] and [tex]\(\frac{d^2 y}{dx^2}\)[/tex] into the given differential equation:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]

Substituting the values, we get:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) - x \left(\frac{1}{\sqrt{1 - x^2}}\right) \][/tex]

Simplify each term:

1. For the first term:
[tex]\[ \left(1 - x^2\right) \left(\frac{x}{(1 - x^2)^{\frac{3}{2}}}\right) = \frac{x (1 - x^2)}{(1 - x^2)^{\frac{3}{2}}} = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]

2. For the second term:
[tex]\[ x \left(\frac{1}{\sqrt{1 - x^2}}\right) = \frac{x}{(1 - x^2)^{\frac{1}{2}}} \][/tex]

We see that both terms are the same:
[tex]\[ \frac{x}{(1 - x^2)^{\frac{1}{2}}} - \frac{x}{(1 - x^2)^{\frac{1}{2}}} = 0 \][/tex]

Thus:
[tex]\[ 0 = 0 \][/tex]

This completes the proof that:
[tex]\[ \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0 \][/tex]

Hence, the given differential equation holds true for [tex]\( y = \sin^{-1}(x) \)[/tex].