Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the center of a circle represented by the equation [tex]\((x + 9)^2 + (y - 6)^2 = 10^2\)[/tex], we need to compare it to the standard form of a circle's equation, which is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2. \][/tex]
In this standard form:
- [tex]\((h, k)\)[/tex] is the center of the circle.
- [tex]\(r\)[/tex] is the radius of the circle.
Given the equation [tex]\((x + 9)^2 + (y - 6)^2 = 10^2\)[/tex], we observe the following:
- The term [tex]\((x + 9)\)[/tex] can be rewritten in the form [tex]\((x - (-9))\)[/tex]. This translation means that [tex]\(h = -9\)[/tex].
- The term [tex]\((y - 6)\)[/tex] already matches the form [tex]\((y - k)\)[/tex], indicating that [tex]\(k = 6\)[/tex].
Therefore, the center of the circle is [tex]\((h, k)\)[/tex], which translates to:
[tex]\[ (h, k) = (-9, 6). \][/tex]
So, the correct answer is [tex]\((-9, 6)\)[/tex].
[tex]\[ (x - h)^2 + (y - k)^2 = r^2. \][/tex]
In this standard form:
- [tex]\((h, k)\)[/tex] is the center of the circle.
- [tex]\(r\)[/tex] is the radius of the circle.
Given the equation [tex]\((x + 9)^2 + (y - 6)^2 = 10^2\)[/tex], we observe the following:
- The term [tex]\((x + 9)\)[/tex] can be rewritten in the form [tex]\((x - (-9))\)[/tex]. This translation means that [tex]\(h = -9\)[/tex].
- The term [tex]\((y - 6)\)[/tex] already matches the form [tex]\((y - k)\)[/tex], indicating that [tex]\(k = 6\)[/tex].
Therefore, the center of the circle is [tex]\((h, k)\)[/tex], which translates to:
[tex]\[ (h, k) = (-9, 6). \][/tex]
So, the correct answer is [tex]\((-9, 6)\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.