Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the domain of the function [tex]\( y = \log_5 x \)[/tex], we need to understand the properties of the logarithmic function. A logarithm [tex]\( \log_b (x) \)[/tex] (where [tex]\( b \)[/tex] is the base and [tex]\( x \)[/tex] is the argument) is defined only for positive real numbers. This means that the argument [tex]\( x \)[/tex] of the logarithmic function must be greater than 0.
Let's summarize the key points:
1. Logarithmic Function Properties: The logarithm is defined only for positive values of the argument. Therefore, [tex]\( x \)[/tex] must be greater than 0.
2. Implication for the Domain: Since [tex]\( y = \log_5 x \)[/tex] requires [tex]\( x \)[/tex] to be positive, the domain of this function is all real numbers greater than 0.
Based on these points, the correct answer is:
- all real numbers greater than 0.
Let's summarize the key points:
1. Logarithmic Function Properties: The logarithm is defined only for positive values of the argument. Therefore, [tex]\( x \)[/tex] must be greater than 0.
2. Implication for the Domain: Since [tex]\( y = \log_5 x \)[/tex] requires [tex]\( x \)[/tex] to be positive, the domain of this function is all real numbers greater than 0.
Based on these points, the correct answer is:
- all real numbers greater than 0.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.