Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve this system of equations using matrices to determine the cost of a t-shirt and the cost of a notebook.
We have the following equations from the problem:
1. [tex]\( 2x + 3y = 40 \)[/tex]
2. [tex]\( x + y = 16 \)[/tex]
Here, [tex]\( x \)[/tex] represents the cost of a t-shirt and [tex]\( y \)[/tex] represents the cost of a notebook.
We can write these equations in matrix form as:
[tex]\[ \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Let's denote:
- [tex]\( A \)[/tex] as the coefficient matrix [tex]\(\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{x} \)[/tex] as the variable matrix [tex]\(\begin{pmatrix} x \\ y \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{b} \)[/tex] as the constant matrix [tex]\(\begin{pmatrix} 40 \\ 16 \end{pmatrix}\)[/tex]
Our matrix equation is:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
To solve for [tex]\(\mathbf{x}\)[/tex], we can use the inverse of [tex]\( A \)[/tex] (denoted [tex]\( A^{-1} \)[/tex]) and multiply both sides of the equation by [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} A \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Since [tex]\( A^{-1} A \)[/tex] is the identity matrix [tex]\( I \)[/tex], we have:
[tex]\[ I \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Which simplifies to:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Now we need to compute [tex]\( A^{-1} \)[/tex]. The inverse of a 2x2 matrix [tex]\( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For our matrix [tex]\( A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( d = 1 \)[/tex]
The determinant of [tex]\( A \)[/tex] is:
[tex]\[ \det(A) = ad - bc = (2)(1) - (3)(1) = 2 - 3 = -1 \][/tex]
Thus, the inverse of [tex]\( A \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \][/tex]
Next, we multiply [tex]\( A^{-1} \)[/tex] by [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Carrying out the matrix multiplication:
[tex]\[ \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} = \begin{pmatrix} (-1 \cdot 40) + (3 \cdot 16) \\ (1 \cdot 40) + (-2 \cdot 16) \end{pmatrix} = \begin{pmatrix} -40 + 48 \\ 40 - 32 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Therefore, the cost of a t-shirt [tex]\( x \)[/tex] is [tex]$8 and the cost of a notebook \( y \) is $[/tex]8.
We have the following equations from the problem:
1. [tex]\( 2x + 3y = 40 \)[/tex]
2. [tex]\( x + y = 16 \)[/tex]
Here, [tex]\( x \)[/tex] represents the cost of a t-shirt and [tex]\( y \)[/tex] represents the cost of a notebook.
We can write these equations in matrix form as:
[tex]\[ \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Let's denote:
- [tex]\( A \)[/tex] as the coefficient matrix [tex]\(\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{x} \)[/tex] as the variable matrix [tex]\(\begin{pmatrix} x \\ y \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{b} \)[/tex] as the constant matrix [tex]\(\begin{pmatrix} 40 \\ 16 \end{pmatrix}\)[/tex]
Our matrix equation is:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
To solve for [tex]\(\mathbf{x}\)[/tex], we can use the inverse of [tex]\( A \)[/tex] (denoted [tex]\( A^{-1} \)[/tex]) and multiply both sides of the equation by [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} A \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Since [tex]\( A^{-1} A \)[/tex] is the identity matrix [tex]\( I \)[/tex], we have:
[tex]\[ I \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Which simplifies to:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Now we need to compute [tex]\( A^{-1} \)[/tex]. The inverse of a 2x2 matrix [tex]\( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For our matrix [tex]\( A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( d = 1 \)[/tex]
The determinant of [tex]\( A \)[/tex] is:
[tex]\[ \det(A) = ad - bc = (2)(1) - (3)(1) = 2 - 3 = -1 \][/tex]
Thus, the inverse of [tex]\( A \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \][/tex]
Next, we multiply [tex]\( A^{-1} \)[/tex] by [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Carrying out the matrix multiplication:
[tex]\[ \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} = \begin{pmatrix} (-1 \cdot 40) + (3 \cdot 16) \\ (1 \cdot 40) + (-2 \cdot 16) \end{pmatrix} = \begin{pmatrix} -40 + 48 \\ 40 - 32 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Therefore, the cost of a t-shirt [tex]\( x \)[/tex] is [tex]$8 and the cost of a notebook \( y \) is $[/tex]8.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.