Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve this system of equations using matrices to determine the cost of a t-shirt and the cost of a notebook.
We have the following equations from the problem:
1. [tex]\( 2x + 3y = 40 \)[/tex]
2. [tex]\( x + y = 16 \)[/tex]
Here, [tex]\( x \)[/tex] represents the cost of a t-shirt and [tex]\( y \)[/tex] represents the cost of a notebook.
We can write these equations in matrix form as:
[tex]\[ \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Let's denote:
- [tex]\( A \)[/tex] as the coefficient matrix [tex]\(\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{x} \)[/tex] as the variable matrix [tex]\(\begin{pmatrix} x \\ y \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{b} \)[/tex] as the constant matrix [tex]\(\begin{pmatrix} 40 \\ 16 \end{pmatrix}\)[/tex]
Our matrix equation is:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
To solve for [tex]\(\mathbf{x}\)[/tex], we can use the inverse of [tex]\( A \)[/tex] (denoted [tex]\( A^{-1} \)[/tex]) and multiply both sides of the equation by [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} A \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Since [tex]\( A^{-1} A \)[/tex] is the identity matrix [tex]\( I \)[/tex], we have:
[tex]\[ I \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Which simplifies to:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Now we need to compute [tex]\( A^{-1} \)[/tex]. The inverse of a 2x2 matrix [tex]\( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For our matrix [tex]\( A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( d = 1 \)[/tex]
The determinant of [tex]\( A \)[/tex] is:
[tex]\[ \det(A) = ad - bc = (2)(1) - (3)(1) = 2 - 3 = -1 \][/tex]
Thus, the inverse of [tex]\( A \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \][/tex]
Next, we multiply [tex]\( A^{-1} \)[/tex] by [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Carrying out the matrix multiplication:
[tex]\[ \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} = \begin{pmatrix} (-1 \cdot 40) + (3 \cdot 16) \\ (1 \cdot 40) + (-2 \cdot 16) \end{pmatrix} = \begin{pmatrix} -40 + 48 \\ 40 - 32 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Therefore, the cost of a t-shirt [tex]\( x \)[/tex] is [tex]$8 and the cost of a notebook \( y \) is $[/tex]8.
We have the following equations from the problem:
1. [tex]\( 2x + 3y = 40 \)[/tex]
2. [tex]\( x + y = 16 \)[/tex]
Here, [tex]\( x \)[/tex] represents the cost of a t-shirt and [tex]\( y \)[/tex] represents the cost of a notebook.
We can write these equations in matrix form as:
[tex]\[ \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Let's denote:
- [tex]\( A \)[/tex] as the coefficient matrix [tex]\(\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{x} \)[/tex] as the variable matrix [tex]\(\begin{pmatrix} x \\ y \end{pmatrix}\)[/tex]
- [tex]\( \mathbf{b} \)[/tex] as the constant matrix [tex]\(\begin{pmatrix} 40 \\ 16 \end{pmatrix}\)[/tex]
Our matrix equation is:
[tex]\[ A \mathbf{x} = \mathbf{b} \][/tex]
To solve for [tex]\(\mathbf{x}\)[/tex], we can use the inverse of [tex]\( A \)[/tex] (denoted [tex]\( A^{-1} \)[/tex]) and multiply both sides of the equation by [tex]\( A^{-1} \)[/tex]:
[tex]\[ A^{-1} A \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Since [tex]\( A^{-1} A \)[/tex] is the identity matrix [tex]\( I \)[/tex], we have:
[tex]\[ I \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Which simplifies to:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} \][/tex]
Now we need to compute [tex]\( A^{-1} \)[/tex]. The inverse of a 2x2 matrix [tex]\( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
For our matrix [tex]\( A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 1 \)[/tex]
- [tex]\( d = 1 \)[/tex]
The determinant of [tex]\( A \)[/tex] is:
[tex]\[ \det(A) = ad - bc = (2)(1) - (3)(1) = 2 - 3 = -1 \][/tex]
Thus, the inverse of [tex]\( A \)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \][/tex]
Next, we multiply [tex]\( A^{-1} \)[/tex] by [tex]\( \mathbf{b} \)[/tex] to find [tex]\( \mathbf{x} \)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{b} = \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} \][/tex]
Carrying out the matrix multiplication:
[tex]\[ \begin{pmatrix} -1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 40 \\ 16 \end{pmatrix} = \begin{pmatrix} (-1 \cdot 40) + (3 \cdot 16) \\ (1 \cdot 40) + (-2 \cdot 16) \end{pmatrix} = \begin{pmatrix} -40 + 48 \\ 40 - 32 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix} \][/tex]
Therefore, the cost of a t-shirt [tex]\( x \)[/tex] is [tex]$8 and the cost of a notebook \( y \) is $[/tex]8.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.