Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's solve the radical equation step-by-step to determine the correct statement about its solutions.
### Given Equation
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
### Step 1: Isolate the Square Root
First, we need to isolate the square root term if it's not already isolated:
[tex]\[ \sqrt{-4x + 28} = x - 7 \][/tex]
### Step 2: Square Both Sides
Next, to eliminate the square root, we square both sides of the equation:
[tex]\[ (\sqrt{-4x + 28})^2 = (x - 7)^2 \][/tex]
Simplifying both sides, we get:
[tex]\[ -4x + 28 = x^2 - 14x + 49 \][/tex]
### Step 3: Rearrange and Form a Quadratic Equation
Now, we'll move all terms to one side to form a quadratic equation:
[tex]\[ x^2 - 14x + 49 + 4x - 28 = 0 \][/tex]
[tex]\[ x^2 - 10x + 21 = 0 \][/tex]
### Step 4: Solve the Quadratic Equation
Now, we solve the quadratic equation [tex]\( x^2 - 10x + 21 = 0 \)[/tex] using the quadratic formula [tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]. For this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = -10 \)[/tex], and [tex]\( c = 21 \)[/tex].
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-10)^2 - 4(1)(21) \][/tex]
[tex]\[ \Delta = 100 - 84 \][/tex]
[tex]\[ \Delta = 16 \][/tex]
Since the discriminant is positive, the quadratic equation has two solutions:
[tex]\[ x = \frac{10 \pm \sqrt{16}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{10 \pm 4}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10 + 4}{2} = 7 \][/tex]
[tex]\[ x = \frac{10 - 4}{2} = 3 \][/tex]
### Step 5: Check for Extraneous Solutions
It's important to check these solutions in the original equation to see if they are valid.
For [tex]\( x = 7 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 7 - 7 = \sqrt{-4(7) + 28} \][/tex]
[tex]\[ 0 = \sqrt{-28 + 28} \][/tex]
[tex]\[ 0 = \sqrt{0} \][/tex]
[tex]\[ 0 = 0 \][/tex]
This is true.
For [tex]\( x = 3 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 3 - 7 = \sqrt{-4(3) + 28} \][/tex]
[tex]\[ -4 = \sqrt{-12 + 28} \][/tex]
[tex]\[ -4 = \sqrt{16} \][/tex]
[tex]\[ -4 = 4 \][/tex]
This is false.
Therefore, [tex]\( x = 3 \)[/tex] is an extraneous solution.
### Conclusion
The equation has one true solution, which is [tex]\( x = 7 \)[/tex].
So, the correct statement is:
"There is one true solution, with a value greater than 6."
### Given Equation
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
### Step 1: Isolate the Square Root
First, we need to isolate the square root term if it's not already isolated:
[tex]\[ \sqrt{-4x + 28} = x - 7 \][/tex]
### Step 2: Square Both Sides
Next, to eliminate the square root, we square both sides of the equation:
[tex]\[ (\sqrt{-4x + 28})^2 = (x - 7)^2 \][/tex]
Simplifying both sides, we get:
[tex]\[ -4x + 28 = x^2 - 14x + 49 \][/tex]
### Step 3: Rearrange and Form a Quadratic Equation
Now, we'll move all terms to one side to form a quadratic equation:
[tex]\[ x^2 - 14x + 49 + 4x - 28 = 0 \][/tex]
[tex]\[ x^2 - 10x + 21 = 0 \][/tex]
### Step 4: Solve the Quadratic Equation
Now, we solve the quadratic equation [tex]\( x^2 - 10x + 21 = 0 \)[/tex] using the quadratic formula [tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]. For this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = -10 \)[/tex], and [tex]\( c = 21 \)[/tex].
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-10)^2 - 4(1)(21) \][/tex]
[tex]\[ \Delta = 100 - 84 \][/tex]
[tex]\[ \Delta = 16 \][/tex]
Since the discriminant is positive, the quadratic equation has two solutions:
[tex]\[ x = \frac{10 \pm \sqrt{16}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{10 \pm 4}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10 + 4}{2} = 7 \][/tex]
[tex]\[ x = \frac{10 - 4}{2} = 3 \][/tex]
### Step 5: Check for Extraneous Solutions
It's important to check these solutions in the original equation to see if they are valid.
For [tex]\( x = 7 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 7 - 7 = \sqrt{-4(7) + 28} \][/tex]
[tex]\[ 0 = \sqrt{-28 + 28} \][/tex]
[tex]\[ 0 = \sqrt{0} \][/tex]
[tex]\[ 0 = 0 \][/tex]
This is true.
For [tex]\( x = 3 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 3 - 7 = \sqrt{-4(3) + 28} \][/tex]
[tex]\[ -4 = \sqrt{-12 + 28} \][/tex]
[tex]\[ -4 = \sqrt{16} \][/tex]
[tex]\[ -4 = 4 \][/tex]
This is false.
Therefore, [tex]\( x = 3 \)[/tex] is an extraneous solution.
### Conclusion
The equation has one true solution, which is [tex]\( x = 7 \)[/tex].
So, the correct statement is:
"There is one true solution, with a value greater than 6."
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.