Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's solve the radical equation step-by-step to determine the correct statement about its solutions.
### Given Equation
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
### Step 1: Isolate the Square Root
First, we need to isolate the square root term if it's not already isolated:
[tex]\[ \sqrt{-4x + 28} = x - 7 \][/tex]
### Step 2: Square Both Sides
Next, to eliminate the square root, we square both sides of the equation:
[tex]\[ (\sqrt{-4x + 28})^2 = (x - 7)^2 \][/tex]
Simplifying both sides, we get:
[tex]\[ -4x + 28 = x^2 - 14x + 49 \][/tex]
### Step 3: Rearrange and Form a Quadratic Equation
Now, we'll move all terms to one side to form a quadratic equation:
[tex]\[ x^2 - 14x + 49 + 4x - 28 = 0 \][/tex]
[tex]\[ x^2 - 10x + 21 = 0 \][/tex]
### Step 4: Solve the Quadratic Equation
Now, we solve the quadratic equation [tex]\( x^2 - 10x + 21 = 0 \)[/tex] using the quadratic formula [tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]. For this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = -10 \)[/tex], and [tex]\( c = 21 \)[/tex].
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-10)^2 - 4(1)(21) \][/tex]
[tex]\[ \Delta = 100 - 84 \][/tex]
[tex]\[ \Delta = 16 \][/tex]
Since the discriminant is positive, the quadratic equation has two solutions:
[tex]\[ x = \frac{10 \pm \sqrt{16}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{10 \pm 4}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10 + 4}{2} = 7 \][/tex]
[tex]\[ x = \frac{10 - 4}{2} = 3 \][/tex]
### Step 5: Check for Extraneous Solutions
It's important to check these solutions in the original equation to see if they are valid.
For [tex]\( x = 7 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 7 - 7 = \sqrt{-4(7) + 28} \][/tex]
[tex]\[ 0 = \sqrt{-28 + 28} \][/tex]
[tex]\[ 0 = \sqrt{0} \][/tex]
[tex]\[ 0 = 0 \][/tex]
This is true.
For [tex]\( x = 3 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 3 - 7 = \sqrt{-4(3) + 28} \][/tex]
[tex]\[ -4 = \sqrt{-12 + 28} \][/tex]
[tex]\[ -4 = \sqrt{16} \][/tex]
[tex]\[ -4 = 4 \][/tex]
This is false.
Therefore, [tex]\( x = 3 \)[/tex] is an extraneous solution.
### Conclusion
The equation has one true solution, which is [tex]\( x = 7 \)[/tex].
So, the correct statement is:
"There is one true solution, with a value greater than 6."
### Given Equation
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
### Step 1: Isolate the Square Root
First, we need to isolate the square root term if it's not already isolated:
[tex]\[ \sqrt{-4x + 28} = x - 7 \][/tex]
### Step 2: Square Both Sides
Next, to eliminate the square root, we square both sides of the equation:
[tex]\[ (\sqrt{-4x + 28})^2 = (x - 7)^2 \][/tex]
Simplifying both sides, we get:
[tex]\[ -4x + 28 = x^2 - 14x + 49 \][/tex]
### Step 3: Rearrange and Form a Quadratic Equation
Now, we'll move all terms to one side to form a quadratic equation:
[tex]\[ x^2 - 14x + 49 + 4x - 28 = 0 \][/tex]
[tex]\[ x^2 - 10x + 21 = 0 \][/tex]
### Step 4: Solve the Quadratic Equation
Now, we solve the quadratic equation [tex]\( x^2 - 10x + 21 = 0 \)[/tex] using the quadratic formula [tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]. For this equation, [tex]\( a = 1 \)[/tex], [tex]\( b = -10 \)[/tex], and [tex]\( c = 21 \)[/tex].
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-10)^2 - 4(1)(21) \][/tex]
[tex]\[ \Delta = 100 - 84 \][/tex]
[tex]\[ \Delta = 16 \][/tex]
Since the discriminant is positive, the quadratic equation has two solutions:
[tex]\[ x = \frac{10 \pm \sqrt{16}}{2 \cdot 1} \][/tex]
[tex]\[ x = \frac{10 \pm 4}{2} \][/tex]
So, the solutions are:
[tex]\[ x = \frac{10 + 4}{2} = 7 \][/tex]
[tex]\[ x = \frac{10 - 4}{2} = 3 \][/tex]
### Step 5: Check for Extraneous Solutions
It's important to check these solutions in the original equation to see if they are valid.
For [tex]\( x = 7 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 7 - 7 = \sqrt{-4(7) + 28} \][/tex]
[tex]\[ 0 = \sqrt{-28 + 28} \][/tex]
[tex]\[ 0 = \sqrt{0} \][/tex]
[tex]\[ 0 = 0 \][/tex]
This is true.
For [tex]\( x = 3 \)[/tex]:
[tex]\[ x - 7 = \sqrt{-4x + 28} \][/tex]
[tex]\[ 3 - 7 = \sqrt{-4(3) + 28} \][/tex]
[tex]\[ -4 = \sqrt{-12 + 28} \][/tex]
[tex]\[ -4 = \sqrt{16} \][/tex]
[tex]\[ -4 = 4 \][/tex]
This is false.
Therefore, [tex]\( x = 3 \)[/tex] is an extraneous solution.
### Conclusion
The equation has one true solution, which is [tex]\( x = 7 \)[/tex].
So, the correct statement is:
"There is one true solution, with a value greater than 6."
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.