Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the inequality [tex]\( 7 + 2x \geq -5 - x \)[/tex], we need to isolate the variable [tex]\( x \)[/tex]. Here’s the step-by-step solution:
1. Start with the given inequality:
[tex]\[ 7 + 2x \geq -5 - x \][/tex]
2. Move all terms involving [tex]\( x \)[/tex] to one side of the inequality:
To do this, we can add [tex]\( x \)[/tex] to both sides:
[tex]\[ 7 + 2x + x \geq -5 - x + x \][/tex]
Simplifying this, we get:
[tex]\[ 7 + 3x \geq -5 \][/tex]
3. Move the constant terms to the other side of the inequality:
To isolate the term involving [tex]\( x \)[/tex], we subtract 7 from both sides:
[tex]\[ 7 + 3x - 7 \geq -5 - 7 \][/tex]
Simplifying this, we get:
[tex]\[ 3x \geq -12 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Divide both sides of the inequality by 3:
[tex]\[ \frac{3x}{3} \geq \frac{-12}{3} \][/tex]
Simplifying the division, we obtain:
[tex]\[ x \geq -4 \][/tex]
Thus, the solution to the inequality [tex]\( 7 + 2x \geq -5 - x \)[/tex] is:
[tex]\[ x \geq -4 \][/tex]
This can be written in interval notation as:
[tex]\[ [-4, \infty) \][/tex]
We have thus determined that [tex]\( x \)[/tex] lies in the interval [tex]\([-4, \infty)\)[/tex].
1. Start with the given inequality:
[tex]\[ 7 + 2x \geq -5 - x \][/tex]
2. Move all terms involving [tex]\( x \)[/tex] to one side of the inequality:
To do this, we can add [tex]\( x \)[/tex] to both sides:
[tex]\[ 7 + 2x + x \geq -5 - x + x \][/tex]
Simplifying this, we get:
[tex]\[ 7 + 3x \geq -5 \][/tex]
3. Move the constant terms to the other side of the inequality:
To isolate the term involving [tex]\( x \)[/tex], we subtract 7 from both sides:
[tex]\[ 7 + 3x - 7 \geq -5 - 7 \][/tex]
Simplifying this, we get:
[tex]\[ 3x \geq -12 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Divide both sides of the inequality by 3:
[tex]\[ \frac{3x}{3} \geq \frac{-12}{3} \][/tex]
Simplifying the division, we obtain:
[tex]\[ x \geq -4 \][/tex]
Thus, the solution to the inequality [tex]\( 7 + 2x \geq -5 - x \)[/tex] is:
[tex]\[ x \geq -4 \][/tex]
This can be written in interval notation as:
[tex]\[ [-4, \infty) \][/tex]
We have thus determined that [tex]\( x \)[/tex] lies in the interval [tex]\([-4, \infty)\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.