Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Alright, let's solve the equation step by step to verify the given trigonometric identity:
[tex]\[ (\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
First, let's express the left-hand side of the equation using basic trigonometric identities. Recall that cosecant and cotangent are defined as:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \][/tex]
Substitute these into the left-hand side:
[tex]\[ (\csc \theta - \cot \theta)^2 = \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^2 \][/tex]
Combine the terms inside the parentheses:
[tex]\[ = \left(\frac{1 - \cos \theta}{\sin \theta}\right)^2 \][/tex]
Simplify the expression:
[tex]\[ = \frac{(1 - \cos \theta)^2}{\sin^2 \theta} \][/tex]
Now, consider the right-hand side of the equation:
[tex]\[ \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
We need to determine if the simplified left-hand side equals the right-hand side. Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta = 1 - \cos^2 \theta \][/tex]
Hence,
[tex]\[ \frac{(1 - \cos \theta)^2}{\sin^2 \theta} = \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta} \][/tex]
Observe that [tex]\(1 - \cos^2 \theta\)[/tex] can be written as:
[tex]\[ 1 - \cos^2 \theta = (1 - \cos \theta)(1 + \cos \theta) \][/tex]
So,
[tex]\[ \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta} = \frac{(1 - \cos \theta)^2}{(1 - \cos \theta)(1 + \cos \theta)} \][/tex]
Cancel out [tex]\(1 - \cos \theta\)[/tex] in the numerator and denominator:
[tex]\[ = \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
Thus, we have shown that:
[tex]\[ (\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
So, the identity is verified to be true.
[tex]\[ (\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
First, let's express the left-hand side of the equation using basic trigonometric identities. Recall that cosecant and cotangent are defined as:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \][/tex]
Substitute these into the left-hand side:
[tex]\[ (\csc \theta - \cot \theta)^2 = \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^2 \][/tex]
Combine the terms inside the parentheses:
[tex]\[ = \left(\frac{1 - \cos \theta}{\sin \theta}\right)^2 \][/tex]
Simplify the expression:
[tex]\[ = \frac{(1 - \cos \theta)^2}{\sin^2 \theta} \][/tex]
Now, consider the right-hand side of the equation:
[tex]\[ \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
We need to determine if the simplified left-hand side equals the right-hand side. Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta = 1 - \cos^2 \theta \][/tex]
Hence,
[tex]\[ \frac{(1 - \cos \theta)^2}{\sin^2 \theta} = \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta} \][/tex]
Observe that [tex]\(1 - \cos^2 \theta\)[/tex] can be written as:
[tex]\[ 1 - \cos^2 \theta = (1 - \cos \theta)(1 + \cos \theta) \][/tex]
So,
[tex]\[ \frac{(1 - \cos \theta)^2}{1 - \cos^2 \theta} = \frac{(1 - \cos \theta)^2}{(1 - \cos \theta)(1 + \cos \theta)} \][/tex]
Cancel out [tex]\(1 - \cos \theta\)[/tex] in the numerator and denominator:
[tex]\[ = \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
Thus, we have shown that:
[tex]\[ (\csc \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta} \][/tex]
So, the identity is verified to be true.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.