Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Select all the correct answers.

Given this equation of a parabola in standard form, [tex]f(x)=-2x^2+12x+21[/tex], which statements are true?

A. The vertex is [tex](3, 3)[/tex].
B. The parabola opens down.
C. The vertex is [tex](-3, -3)[/tex].
D. The parabola opens up.


Sagot :

To determine which statements are true for the given equation of the parabola [tex]\( f(x) = -2x^2 + 12x + 21 \)[/tex], we need to follow these steps:

1. Identifying the Coefficients:
- The equation is in the standard form [tex]\( ax^2 + bx + c \)[/tex].
- Here, [tex]\( a = -2 \)[/tex], [tex]\( b = 12 \)[/tex], and [tex]\( c = 21 \)[/tex].

2. Finding the Vertex:
- The x-coordinate of the vertex of a parabola [tex]\( y = ax^2 + bx + c \)[/tex] can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
- Substitute [tex]\( a = -2 \)[/tex] and [tex]\( b = 12 \)[/tex] into the formula:
[tex]\[ x = -\frac{12}{2 \times -2} = -\frac{12}{-4} = 3 \][/tex]
- Next, calculate the y-coordinate of the vertex by substituting [tex]\( x = 3 \)[/tex] back into the original equation:
[tex]\[ y = -2(3)^2 + 12(3) + 21 = -2(9) + 36 + 21 = -18 + 36 + 21 = 39 \][/tex]
- So, the vertex of the parabola is [tex]\( (3, 39) \)[/tex].

3. Direction of the Parabola:
- The direction in which the parabola opens is determined by the sign of the coefficient [tex]\( a \)[/tex].
- If [tex]\( a < 0 \)[/tex], the parabola opens downwards.
- If [tex]\( a > 0 \)[/tex], the parabola opens upwards.
- In this case, since [tex]\( a = -2 \)[/tex] (which is less than 0), the parabola opens downwards.

4. Verifying the Statements:
- "The vertex is [tex]\( (3,3) \)[/tex]": False. The vertex is [tex]\( (3,39) \)[/tex], not [tex]\( (3,3) \)[/tex].
- "The parabola opens down": True. Because [tex]\( a = -2 \)[/tex] which is less than 0.
- "The vertex is [tex]\( (-3,-3) \)[/tex]": False. The vertex is [tex]\( (3,39) \)[/tex], not [tex]\( (-3,-3) \)[/tex].
- "The parabola opens up": False. The parabola opens downwards.

In conclusion, the correct statements are:

- The parabola opens down.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.