Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Alright, let's start by analyzing the problem step-by-step.
Step 1: Perimeter of Square 1
Square 1 has a side length [tex]\( x = 2 \)[/tex].
- The perimeter [tex]\( P_1 \)[/tex] of a square is given by [tex]\( 4 \times \text{side length} \)[/tex].
[tex]\[ P_1 = 4 \times 2 = 8 \][/tex]
Step 2: Determining the Side Length of Square 2
Square 2 is formed by joining the midpoints of the sides of Square 1. When we join the midpoints of a square, the resulting shape is another square whose side is the length of the diagonal of the smaller squares formed by splitting Square 1 into four equal parts.
Visualize the smaller squares, each formed from half the sides of Square 1:
- The diagonal [tex]\( d \)[/tex] of each smaller square (which is the side length of Square 2) can be found using the Pythagorean theorem. Considering one of the smaller squares as having side [tex]\( \frac{x}{2} \)[/tex]:
[tex]\[ d = \sqrt{\left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^2} = x \cdot \frac{1}{\sqrt{2}} \][/tex]
With [tex]\( x = 2 \)[/tex]:
[tex]\[ d = 2 \cdot \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \][/tex]
So, the side length [tex]\( y \)[/tex] of Square 2 is [tex]\( \sqrt{2} \)[/tex].
Step 3: Perimeter of Square 2
- The perimeter [tex]\( P_2 \)[/tex] of Square 2 is given by [tex]\( 4 \times \text{side length} \)[/tex].
[tex]\[ P_2 = 4 \times \sqrt{2} \approx 5.65685424949238 \][/tex]
Step 4: Ratio of the Perimeters of Square 1 to Square 2
Now, we need to find the ratio of [tex]\( P_1 \)[/tex] to [tex]\( P_2 \)[/tex]:
[tex]\[ \text{Ratio} = \frac{P_1}{P_2} = \frac{8}{4\sqrt{2}} = \frac{8}{4 \times 1.4142135623730951} = \frac{8}{5.65685424949238} \approx 1.4142135623730951 \approx \sqrt{2} \][/tex]
Thus, the ratio of the perimeter of Square 1 to the perimeter of Square 2 simplifies to [tex]\( \sqrt{2} \)[/tex], which corresponds to [tex]\(\boxed{1: \sqrt{2}}\)[/tex].
So, the correct answer is:
C. [tex]\(1: \sqrt{2}\)[/tex]
Step 1: Perimeter of Square 1
Square 1 has a side length [tex]\( x = 2 \)[/tex].
- The perimeter [tex]\( P_1 \)[/tex] of a square is given by [tex]\( 4 \times \text{side length} \)[/tex].
[tex]\[ P_1 = 4 \times 2 = 8 \][/tex]
Step 2: Determining the Side Length of Square 2
Square 2 is formed by joining the midpoints of the sides of Square 1. When we join the midpoints of a square, the resulting shape is another square whose side is the length of the diagonal of the smaller squares formed by splitting Square 1 into four equal parts.
Visualize the smaller squares, each formed from half the sides of Square 1:
- The diagonal [tex]\( d \)[/tex] of each smaller square (which is the side length of Square 2) can be found using the Pythagorean theorem. Considering one of the smaller squares as having side [tex]\( \frac{x}{2} \)[/tex]:
[tex]\[ d = \sqrt{\left(\frac{x}{2}\right)^2 + \left(\frac{x}{2}\right)^2} = x \cdot \frac{1}{\sqrt{2}} \][/tex]
With [tex]\( x = 2 \)[/tex]:
[tex]\[ d = 2 \cdot \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \][/tex]
So, the side length [tex]\( y \)[/tex] of Square 2 is [tex]\( \sqrt{2} \)[/tex].
Step 3: Perimeter of Square 2
- The perimeter [tex]\( P_2 \)[/tex] of Square 2 is given by [tex]\( 4 \times \text{side length} \)[/tex].
[tex]\[ P_2 = 4 \times \sqrt{2} \approx 5.65685424949238 \][/tex]
Step 4: Ratio of the Perimeters of Square 1 to Square 2
Now, we need to find the ratio of [tex]\( P_1 \)[/tex] to [tex]\( P_2 \)[/tex]:
[tex]\[ \text{Ratio} = \frac{P_1}{P_2} = \frac{8}{4\sqrt{2}} = \frac{8}{4 \times 1.4142135623730951} = \frac{8}{5.65685424949238} \approx 1.4142135623730951 \approx \sqrt{2} \][/tex]
Thus, the ratio of the perimeter of Square 1 to the perimeter of Square 2 simplifies to [tex]\( \sqrt{2} \)[/tex], which corresponds to [tex]\(\boxed{1: \sqrt{2}}\)[/tex].
So, the correct answer is:
C. [tex]\(1: \sqrt{2}\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.