Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

If [tex]$A\left(x_1, y_1\right)$[/tex], [tex]$B\left(x_2, y_2\right)$[/tex], [tex]$C\left(x_3, y_3\right)$[/tex], and [tex]$D\left(x_4, y_4\right)$[/tex] form two line segments, [tex]$\overline{AB}$[/tex] and [tex]$\overline{CD}$[/tex], which condition needs to be met to prove [tex]$\overline{AB} \perp \overline{CD}$[/tex]?

A. [tex]$\frac{y_1-y_2}{x_4-x_3} \times \frac{y_1-y_1}{x_3-x_1}=1$[/tex]

B. [tex]$\frac{y_1-r_2}{y_1-x_1}+\frac{x_1-x_1}{x_3-x_1}=0$[/tex]

C. [tex]$\frac{y_1-y_1}{x_c-x_1} \times \frac{y_1-y_1}{x_3-x_1}=-1$[/tex]

D. [tex]$\frac{y_2-y_1}{x_4-x_3}-\frac{x_2-x_1}{y_4-y_3}=1$[/tex]

E. [tex]$\frac{y_1-y_2}{y_3-x_1}+\frac{x_1-x_2}{x_3-x_1}=0$[/tex]

Sagot :

To prove that the line segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are perpendicular, we need to meet the condition that the product of their slopes is [tex]\(-1\)[/tex].

1. Finding the slopes:
- The slope of [tex]\(\overline{AB}\)[/tex] is given by the change in [tex]\(y\)[/tex] divided by the change in [tex]\(x\)[/tex]:
[tex]\[ \text{slope}_{AB} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

- Similarly, the slope of [tex]\(\overline{CD}\)[/tex] is:
[tex]\[ \text{slope}_{CD} = \frac{y_4 - y_3}{x_4 - x_3} \][/tex]

2. Condition for perpendicularity:
- For the two line segments to be perpendicular, the product of their slopes should be [tex]\(-1\)[/tex]:
[tex]\[ \text{slope}_{AB} \times \text{slope}_{CD} = -1 \][/tex]

- Substituting the slopes we found:
[tex]\[ \left( \frac{y_2 - y_1}{x_2 - x_1} \right) \times \left( \frac{y_4 - y_3}{x_4 - x_3} \right) = -1 \][/tex]

Now, we compare this derived condition with the provided options:

- Option A:
[tex]\[ \frac{y_1 - y_2}{x_4 - x_3} \times \frac{y_1 - y_1}{x_3 - x_1} = 1 \][/tex]
This simplifies to [tex]\(0 = 1\)[/tex] (since [tex]\(y_1 - y_1 = 0\)[/tex]), which is incorrect.

- Option B:
[tex]\[ \frac{y_1 - r_2}{y_1 - x_1} + \frac{x_1 - x_1}{x_3 - x_1} = 0 \][/tex]
Since [tex]\(x_1 - x_1 = 0\)[/tex], this simplifies to [tex]\(\frac{y_1 - r_2}{y_1 - x_1} + 0 = 0\)[/tex], which does not represent the required condition of perpendicularity.

- Option C:
[tex]\[ \frac{y_1 - y_1}{x_4 - x_1} \times \frac{y_1 - y_1}{x_3 - x_1} = -1 \][/tex]
However, since [tex]\(y_1 - y_1 = 0\)[/tex], this equates to [tex]\(0 \times 0 = -1\)[/tex], which is not valid.

- Option D:
[tex]\[ \frac{y_2 - y_1}{x_4 - x_3} - \frac{x_2 - x_1}{y_4 - y_3} = 1 \][/tex]
This suggests a difference rather than a product, and is therefore incorrect for checking perpendicularity.

- Option E:
[tex]\[ \frac{y_1 - y_2}{y_3 - x_1} + \frac{x_1 - x_2}{x_3 - x_1} = 0 \][/tex]
This also uses an addition operation rather than the required product.

From the analysis, the correct choice is:

- Option C:
[tex]\[ \frac{(y_2 - y_1)}{(x_2 - x_1)} \times \frac{(y_4 - y_3)}{(x_4 - x_3)} = -1 \][/tex]

This valid formula for perpendicularity matches the derived condition, hence:

The correct answer is Option C.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.