Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the given system of equations by using graphing, follow these steps:
### Step 1: Write Down the Equations
The system of equations is:
[tex]\[ \left\{\begin{array}{l} y = \frac{1}{4}x + 3 \\ y = -\frac{1}{2}x \end{array}\right. \][/tex]
### Step 2: Determine the Slope and Intercept of Each Line
For [tex]\( y = \frac{1}{4}x + 3 \)[/tex]:
- Slope (m) = [tex]\( \frac{1}{4} \)[/tex]
- y-intercept (b) = 3
For [tex]\( y = -\frac{1}{2}x \)[/tex]:
- Slope (m) = [tex]\( -\frac{1}{2} \)[/tex]
- y-intercept (b) = 0
### Step 3: Draw the Graph of Each Line
1. Graph [tex]\( y = \frac{1}{4}x + 3 \)[/tex]:
- Start at the y-intercept (0, 3).
- Use the slope to find another point. With a slope of [tex]\( \frac{1}{4} \)[/tex], you rise 1 unit and run 4 units. From (0, 3), moving right 4 units, you move up 1 unit to the point (4, 4).
- Plot these points and draw a line through them.
2. Graph [tex]\( y = -\frac{1}{2}x \)[/tex]:
- Start at the y-intercept (0, 0).
- Use the slope to find another point. With a slope of [tex]\( -\frac{1}{2} \)[/tex], you rise -1 unit (or fall 1 unit) and run 2 units. From (0, 0), moving right 2 units, you move down 1 unit to the point (2, -1).
- Plot these points and draw a line through them.
### Step 4: Find the Intersection Point
The intersection point of the two lines is where they cross each other on the graph. By observing the graph, the lines intersect at the point (-4, 2).
### Step 5: Verify the Intersection Point
You can check this by substituting [tex]\( x = -4 \)[/tex] into both equations to verify that they give the same [tex]\( y \)[/tex]-value.
For [tex]\( y = \frac{1}{4}x + 3 \)[/tex]:
[tex]\[ y = \frac{1}{4}(-4) + 3 = -1 + 3 = 2 \][/tex]
For [tex]\( y = -\frac{1}{2}x \)[/tex]:
[tex]\[ y = -\frac{1}{2}(-4) = 2 \][/tex]
Both equations give [tex]\( y = 2 \)[/tex] when [tex]\( x = -4 \)[/tex].
### Final Answer
The solution to the system of equations is the point [tex]\((-4, 2)\)[/tex].
### Step 1: Write Down the Equations
The system of equations is:
[tex]\[ \left\{\begin{array}{l} y = \frac{1}{4}x + 3 \\ y = -\frac{1}{2}x \end{array}\right. \][/tex]
### Step 2: Determine the Slope and Intercept of Each Line
For [tex]\( y = \frac{1}{4}x + 3 \)[/tex]:
- Slope (m) = [tex]\( \frac{1}{4} \)[/tex]
- y-intercept (b) = 3
For [tex]\( y = -\frac{1}{2}x \)[/tex]:
- Slope (m) = [tex]\( -\frac{1}{2} \)[/tex]
- y-intercept (b) = 0
### Step 3: Draw the Graph of Each Line
1. Graph [tex]\( y = \frac{1}{4}x + 3 \)[/tex]:
- Start at the y-intercept (0, 3).
- Use the slope to find another point. With a slope of [tex]\( \frac{1}{4} \)[/tex], you rise 1 unit and run 4 units. From (0, 3), moving right 4 units, you move up 1 unit to the point (4, 4).
- Plot these points and draw a line through them.
2. Graph [tex]\( y = -\frac{1}{2}x \)[/tex]:
- Start at the y-intercept (0, 0).
- Use the slope to find another point. With a slope of [tex]\( -\frac{1}{2} \)[/tex], you rise -1 unit (or fall 1 unit) and run 2 units. From (0, 0), moving right 2 units, you move down 1 unit to the point (2, -1).
- Plot these points and draw a line through them.
### Step 4: Find the Intersection Point
The intersection point of the two lines is where they cross each other on the graph. By observing the graph, the lines intersect at the point (-4, 2).
### Step 5: Verify the Intersection Point
You can check this by substituting [tex]\( x = -4 \)[/tex] into both equations to verify that they give the same [tex]\( y \)[/tex]-value.
For [tex]\( y = \frac{1}{4}x + 3 \)[/tex]:
[tex]\[ y = \frac{1}{4}(-4) + 3 = -1 + 3 = 2 \][/tex]
For [tex]\( y = -\frac{1}{2}x \)[/tex]:
[tex]\[ y = -\frac{1}{2}(-4) = 2 \][/tex]
Both equations give [tex]\( y = 2 \)[/tex] when [tex]\( x = -4 \)[/tex].
### Final Answer
The solution to the system of equations is the point [tex]\((-4, 2)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.