Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the quadratic equation step by step.
The given quadratic equation is:
[tex]\[ 25x^2 + 1 = 0 \][/tex]
Step 1: Move the constant term to the other side of the equation.
[tex]\[ 25x^2 = -1 \][/tex]
Step 2: Divide both sides of the equation by 25 to isolate [tex]\( x^2 \)[/tex].
[tex]\[ x^2 = -\frac{1}{25} \][/tex]
Step 3: Take the square root of both sides of the equation to solve for [tex]\( x \)[/tex]. Remember that taking the square root of a negative number introduces imaginary numbers, denoted as [tex]\( i \)[/tex], where [tex]\( i = \sqrt{-1} \)[/tex].
[tex]\[ x = \pm \sqrt{-\frac{1}{25}} \][/tex]
Step 4: Simplify the square root of the fraction.
[tex]\[ x = \pm \frac{\sqrt{-1}}{\sqrt{25}} \][/tex]
Step 5: Recognize that [tex]\( \sqrt{-1} = i \)[/tex] and [tex]\( \sqrt{25} = 5 \)[/tex].
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
Therefore, the solutions to the quadratic equation are:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
From the given options, the correct answer is:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
The given quadratic equation is:
[tex]\[ 25x^2 + 1 = 0 \][/tex]
Step 1: Move the constant term to the other side of the equation.
[tex]\[ 25x^2 = -1 \][/tex]
Step 2: Divide both sides of the equation by 25 to isolate [tex]\( x^2 \)[/tex].
[tex]\[ x^2 = -\frac{1}{25} \][/tex]
Step 3: Take the square root of both sides of the equation to solve for [tex]\( x \)[/tex]. Remember that taking the square root of a negative number introduces imaginary numbers, denoted as [tex]\( i \)[/tex], where [tex]\( i = \sqrt{-1} \)[/tex].
[tex]\[ x = \pm \sqrt{-\frac{1}{25}} \][/tex]
Step 4: Simplify the square root of the fraction.
[tex]\[ x = \pm \frac{\sqrt{-1}}{\sqrt{25}} \][/tex]
Step 5: Recognize that [tex]\( \sqrt{-1} = i \)[/tex] and [tex]\( \sqrt{25} = 5 \)[/tex].
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
Therefore, the solutions to the quadratic equation are:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
From the given options, the correct answer is:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.