Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the quadratic equation step by step.
The given quadratic equation is:
[tex]\[ 25x^2 + 1 = 0 \][/tex]
Step 1: Move the constant term to the other side of the equation.
[tex]\[ 25x^2 = -1 \][/tex]
Step 2: Divide both sides of the equation by 25 to isolate [tex]\( x^2 \)[/tex].
[tex]\[ x^2 = -\frac{1}{25} \][/tex]
Step 3: Take the square root of both sides of the equation to solve for [tex]\( x \)[/tex]. Remember that taking the square root of a negative number introduces imaginary numbers, denoted as [tex]\( i \)[/tex], where [tex]\( i = \sqrt{-1} \)[/tex].
[tex]\[ x = \pm \sqrt{-\frac{1}{25}} \][/tex]
Step 4: Simplify the square root of the fraction.
[tex]\[ x = \pm \frac{\sqrt{-1}}{\sqrt{25}} \][/tex]
Step 5: Recognize that [tex]\( \sqrt{-1} = i \)[/tex] and [tex]\( \sqrt{25} = 5 \)[/tex].
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
Therefore, the solutions to the quadratic equation are:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
From the given options, the correct answer is:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
The given quadratic equation is:
[tex]\[ 25x^2 + 1 = 0 \][/tex]
Step 1: Move the constant term to the other side of the equation.
[tex]\[ 25x^2 = -1 \][/tex]
Step 2: Divide both sides of the equation by 25 to isolate [tex]\( x^2 \)[/tex].
[tex]\[ x^2 = -\frac{1}{25} \][/tex]
Step 3: Take the square root of both sides of the equation to solve for [tex]\( x \)[/tex]. Remember that taking the square root of a negative number introduces imaginary numbers, denoted as [tex]\( i \)[/tex], where [tex]\( i = \sqrt{-1} \)[/tex].
[tex]\[ x = \pm \sqrt{-\frac{1}{25}} \][/tex]
Step 4: Simplify the square root of the fraction.
[tex]\[ x = \pm \frac{\sqrt{-1}}{\sqrt{25}} \][/tex]
Step 5: Recognize that [tex]\( \sqrt{-1} = i \)[/tex] and [tex]\( \sqrt{25} = 5 \)[/tex].
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
Therefore, the solutions to the quadratic equation are:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
From the given options, the correct answer is:
[tex]\[ x = \pm \frac{1}{5} i \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.