At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To address the question, first we will simplify the given polynomial by combining like terms and then analyze the resulting expression to determine its degree and its classification.
Given polynomial:
[tex]\[ \frac{1}{4} x^5 + \frac{1}{2} x^5 - 5 x - 11 \][/tex]
### Step 1: Combine Like Terms for [tex]\(x^5\)[/tex]
1. Identify the coefficients of [tex]\(x^5\)[/tex]:
[tex]\[ \frac{1}{4} x^5 + \frac{1}{2} x^5 \][/tex]
2. Find a common denominator for the fractions:
[tex]\[ \frac{1}{4} = \frac{1}{4} ; \quad \frac{1}{2} = \frac{2}{4} \][/tex]
3. Combine the fractions:
[tex]\[ \frac{1}{4} x^5 + \frac{2}{4} x^5 = \left( \frac{1+2}{4} \right) x^5 = \frac{3}{4} x^5 \][/tex]
Therefore, the polynomial simplifies to:
[tex]\[ \frac{3}{4} x^5 - 5 x - 11 \][/tex]
### Step 2: Write in Descending Powers
The expression is already in descending powers:
[tex]\[ \frac{3}{4} x^5 - 5 x - 11 \][/tex]
### Step 3: Determine the Degree of the Polynomial
The degree of the polynomial is given by the highest power of [tex]\(x\)[/tex] in the polynomial. In this case, the highest power is [tex]\(x^5\)[/tex], so the degree is:
[tex]\[ 5 \][/tex]
### Step 4: Classify the Polynomial
Classification is based on the number of terms in the polynomial:
- A monomial has 1 term
- A binomial has 2 terms
- A trinomial has 3 terms
This polynomial has 3 terms ([tex]\(\frac{3}{4} x^5\)[/tex], [tex]\(-5 x\)[/tex], and [tex]\(-11\)[/tex]), so it is a trinomial.
### Final Answer
B. The polynomial can be simplified.
[tex]\[ \frac{1}{4} x^5 + \frac{1}{2} x^5 - 5 x - 11 = \frac{3}{4} x^5 - 5 x - 11 \][/tex]
Given polynomial:
[tex]\[ \frac{1}{4} x^5 + \frac{1}{2} x^5 - 5 x - 11 \][/tex]
### Step 1: Combine Like Terms for [tex]\(x^5\)[/tex]
1. Identify the coefficients of [tex]\(x^5\)[/tex]:
[tex]\[ \frac{1}{4} x^5 + \frac{1}{2} x^5 \][/tex]
2. Find a common denominator for the fractions:
[tex]\[ \frac{1}{4} = \frac{1}{4} ; \quad \frac{1}{2} = \frac{2}{4} \][/tex]
3. Combine the fractions:
[tex]\[ \frac{1}{4} x^5 + \frac{2}{4} x^5 = \left( \frac{1+2}{4} \right) x^5 = \frac{3}{4} x^5 \][/tex]
Therefore, the polynomial simplifies to:
[tex]\[ \frac{3}{4} x^5 - 5 x - 11 \][/tex]
### Step 2: Write in Descending Powers
The expression is already in descending powers:
[tex]\[ \frac{3}{4} x^5 - 5 x - 11 \][/tex]
### Step 3: Determine the Degree of the Polynomial
The degree of the polynomial is given by the highest power of [tex]\(x\)[/tex] in the polynomial. In this case, the highest power is [tex]\(x^5\)[/tex], so the degree is:
[tex]\[ 5 \][/tex]
### Step 4: Classify the Polynomial
Classification is based on the number of terms in the polynomial:
- A monomial has 1 term
- A binomial has 2 terms
- A trinomial has 3 terms
This polynomial has 3 terms ([tex]\(\frac{3}{4} x^5\)[/tex], [tex]\(-5 x\)[/tex], and [tex]\(-11\)[/tex]), so it is a trinomial.
### Final Answer
B. The polynomial can be simplified.
[tex]\[ \frac{1}{4} x^5 + \frac{1}{2} x^5 - 5 x - 11 = \frac{3}{4} x^5 - 5 x - 11 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.