Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\( y + \frac{y^2-5}{y^2-1} = \frac{y^2+y+2}{y+1} \)[/tex], Janet needs to eliminate the denominators on both sides. Here's a step-by-step explanation of how to determine what to multiply both sides by:
1. Identify the denominators: The denominators in the equation are [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex].
2. Factorize the denominators:
- [tex]\( y^2-1 \)[/tex] can be written as [tex]\( (y-1)(y+1) \)[/tex].
3. Determine the Least Common Multiple (LCM):
- For the denominators [tex]\( y^2-1 = (y-1)(y+1) \)[/tex] and [tex]\( y+1 \)[/tex], the LCM is the expression that contains all the unique factors at their highest power.
- The expression [tex]\( y^2-1 \)[/tex] already includes the factor [tex]\( y+1 \)[/tex], so the LCM of [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex] is [tex]\( y^2-1 \)[/tex].
4. Multiply both sides of the equation by the LCM:
- We need to multiply both sides of the equation by [tex]\( y^2-1 \)[/tex] to clear the denominators and simplify the equation.
Therefore, Janet should multiply both sides of the equation by [tex]\( y^2-1 \)[/tex].
So the correct answer is [tex]\( y^2-1 \)[/tex].
1. Identify the denominators: The denominators in the equation are [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex].
2. Factorize the denominators:
- [tex]\( y^2-1 \)[/tex] can be written as [tex]\( (y-1)(y+1) \)[/tex].
3. Determine the Least Common Multiple (LCM):
- For the denominators [tex]\( y^2-1 = (y-1)(y+1) \)[/tex] and [tex]\( y+1 \)[/tex], the LCM is the expression that contains all the unique factors at their highest power.
- The expression [tex]\( y^2-1 \)[/tex] already includes the factor [tex]\( y+1 \)[/tex], so the LCM of [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex] is [tex]\( y^2-1 \)[/tex].
4. Multiply both sides of the equation by the LCM:
- We need to multiply both sides of the equation by [tex]\( y^2-1 \)[/tex] to clear the denominators and simplify the equation.
Therefore, Janet should multiply both sides of the equation by [tex]\( y^2-1 \)[/tex].
So the correct answer is [tex]\( y^2-1 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.