At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the equation [tex]\( y + \frac{y^2-5}{y^2-1} = \frac{y^2+y+2}{y+1} \)[/tex], Janet needs to eliminate the denominators on both sides. Here's a step-by-step explanation of how to determine what to multiply both sides by:
1. Identify the denominators: The denominators in the equation are [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex].
2. Factorize the denominators:
- [tex]\( y^2-1 \)[/tex] can be written as [tex]\( (y-1)(y+1) \)[/tex].
3. Determine the Least Common Multiple (LCM):
- For the denominators [tex]\( y^2-1 = (y-1)(y+1) \)[/tex] and [tex]\( y+1 \)[/tex], the LCM is the expression that contains all the unique factors at their highest power.
- The expression [tex]\( y^2-1 \)[/tex] already includes the factor [tex]\( y+1 \)[/tex], so the LCM of [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex] is [tex]\( y^2-1 \)[/tex].
4. Multiply both sides of the equation by the LCM:
- We need to multiply both sides of the equation by [tex]\( y^2-1 \)[/tex] to clear the denominators and simplify the equation.
Therefore, Janet should multiply both sides of the equation by [tex]\( y^2-1 \)[/tex].
So the correct answer is [tex]\( y^2-1 \)[/tex].
1. Identify the denominators: The denominators in the equation are [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex].
2. Factorize the denominators:
- [tex]\( y^2-1 \)[/tex] can be written as [tex]\( (y-1)(y+1) \)[/tex].
3. Determine the Least Common Multiple (LCM):
- For the denominators [tex]\( y^2-1 = (y-1)(y+1) \)[/tex] and [tex]\( y+1 \)[/tex], the LCM is the expression that contains all the unique factors at their highest power.
- The expression [tex]\( y^2-1 \)[/tex] already includes the factor [tex]\( y+1 \)[/tex], so the LCM of [tex]\( y^2-1 \)[/tex] and [tex]\( y+1 \)[/tex] is [tex]\( y^2-1 \)[/tex].
4. Multiply both sides of the equation by the LCM:
- We need to multiply both sides of the equation by [tex]\( y^2-1 \)[/tex] to clear the denominators and simplify the equation.
Therefore, Janet should multiply both sides of the equation by [tex]\( y^2-1 \)[/tex].
So the correct answer is [tex]\( y^2-1 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.