Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which statement is true, we need to analyze the given probabilities:
1. Probability that Edward purchases a video game (Event [tex]\( A \)[/tex]):
[tex]\[ P(A) = 0.67 \][/tex]
2. Probability that Greg purchases a video game (Event [tex]\( B \)[/tex]):
[tex]\[ P(B) = 0.74 \][/tex]
3. Probability that Edward purchases a video game given that Greg has purchased a video game:
[tex]\[ P(A \mid B) = 0.67 \][/tex]
For two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, the condition must hold that:
[tex]\[ P(A \mid B) = P(A) \][/tex]
Let's examine this condition with the given data:
[tex]\[ P(A \mid B) = 0.67 \quad \text{and} \quad P(A) = 0.67 \][/tex]
Here, [tex]\( P(A \mid B) = P(A) \)[/tex]. This shows that Edward purchasing a video game is independent of whether Greg has purchased a video game.
Let's look at the given statements in the question:
A. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent because [tex]\( P(A \mid B) = P(B) \)[/tex].
This statement is incorrect because it states the wrong condition for independence. Independence requires [tex]\( P(A \mid B) = P(A) \)[/tex], not [tex]\( P(B) \)[/tex].
B. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent because [tex]\( P(A \mid B) = P(A) \)[/tex].
This statement is correct as it aligns with our condition for independence. [tex]\( P(A \mid B) = P(A) \)[/tex] suggests that the events are independent.
C. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are dependent because [tex]\( P(A \mid B) \neq P(A) \)[/tex].
This statement is incorrect because [tex]\( P(A \mid B) = P(A) \)[/tex], suggesting independence, not dependence.
D. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are dependent because [tex]\( P(A \mid B) = P(A) \)[/tex].
This statement is incorrect because if [tex]\( P(A \mid B) = P(A) \)[/tex], the events are independent, not dependent.
Therefore, the correct answer is:
B. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent because [tex]\( P(A \mid B)=P(A) \)[/tex].
1. Probability that Edward purchases a video game (Event [tex]\( A \)[/tex]):
[tex]\[ P(A) = 0.67 \][/tex]
2. Probability that Greg purchases a video game (Event [tex]\( B \)[/tex]):
[tex]\[ P(B) = 0.74 \][/tex]
3. Probability that Edward purchases a video game given that Greg has purchased a video game:
[tex]\[ P(A \mid B) = 0.67 \][/tex]
For two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, the condition must hold that:
[tex]\[ P(A \mid B) = P(A) \][/tex]
Let's examine this condition with the given data:
[tex]\[ P(A \mid B) = 0.67 \quad \text{and} \quad P(A) = 0.67 \][/tex]
Here, [tex]\( P(A \mid B) = P(A) \)[/tex]. This shows that Edward purchasing a video game is independent of whether Greg has purchased a video game.
Let's look at the given statements in the question:
A. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent because [tex]\( P(A \mid B) = P(B) \)[/tex].
This statement is incorrect because it states the wrong condition for independence. Independence requires [tex]\( P(A \mid B) = P(A) \)[/tex], not [tex]\( P(B) \)[/tex].
B. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent because [tex]\( P(A \mid B) = P(A) \)[/tex].
This statement is correct as it aligns with our condition for independence. [tex]\( P(A \mid B) = P(A) \)[/tex] suggests that the events are independent.
C. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are dependent because [tex]\( P(A \mid B) \neq P(A) \)[/tex].
This statement is incorrect because [tex]\( P(A \mid B) = P(A) \)[/tex], suggesting independence, not dependence.
D. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are dependent because [tex]\( P(A \mid B) = P(A) \)[/tex].
This statement is incorrect because if [tex]\( P(A \mid B) = P(A) \)[/tex], the events are independent, not dependent.
Therefore, the correct answer is:
B. Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent because [tex]\( P(A \mid B)=P(A) \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.